DOI QR코드

DOI QR Code

Calculation of Effective Material Property for Multi-Grain Orthotropic Material by BEM

경계요소법에 의한 다결정 직교 이방성 재료의 유효 재료 상수의 계산

  • 김동은 (경상대학교 대학원 기계공학과) ;
  • 이상훈 (경상대학교 대학원 기계공학과) ;
  • 정일중 (경상대학교 대학원 기계공학과) ;
  • 이석순 (경상대학교 기계항공공학부)
  • Published : 2008.09.01

Abstract

Most of the MEMS parts are made of multi-grain silicon wafer, which is the orthotropic material and its material direction is arbitrary. The reliability of the parts must be guaranteed in order to use for the commercial usage. The need of the structural analysis of its parts emerges an important factor. The material properties of the MEMS parts are calculated by the numerical method in order to reduce a material test. In this study, the effective elastic modulus and its Poisson's ratio are calculated by the boundary element method(BEM) and are compared with the results by the finite element method(FEM).

Keywords

References

  1. den Toonder, J. M., van Dommelen, J. A. W. and Baaijens, F. P. T., 1999, “The Relation between Single Crystal Elasticity and the Effective Elastic Behavior of Polycrystalline Materials : Theory, Measurement and Computation,” Modeling and Simulation in Materials Science and Engineering, Vol. 7, No. 6, pp. 909-928 https://doi.org/10.1088/0965-0393/7/6/301
  2. Mullen, R. L., Ballarini, R., Yin, Y. and Heuer, A. H., 1997, “Monte Carlo Simulation of Effective Elastic Constants of Polycrystalline Thin Films,” Acta Materialia, Vol. 45, No. 6, pp. 2247-2255 https://doi.org/10.1016/S1359-6454(96)00366-7
  3. Yin, Y., 1997, “Monte Carlo Simulation of Effective Elastic Constants of Polycrystalline Thin Films,” M. Sc. Thesis, Case Western Reserve University, Civil Engineering
  4. Chu, Z., 2000, “Monte Carlo Simulation of Elastic Properties of Polycrystalline Materials using the Johnson-Mehl model,” M. Sc. Thesis, Case Western Reserve University, Civil Engineering
  5. Sharpe Jr., W. N., Brown, S., Johnson, G. C. and Knauss, W., 1998, “Round-Robin Tests of Modulus and Strength of Polysilicon,” Mat. Res. Soc. Symp. Proc., San Francisco, CA, Vol. 518, pp. 57-65
  6. Berlincourt, D. Jaffe, H., 1958, “Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate,” Physical Review, Vol.111, No.1, pp. 143-148 https://doi.org/10.1103/PhysRev.111.143
  7. Hellwege, K. H., 1979, Numerical Data and Functional Relationships in Science and Technology, Landolt-Bornstein New Series, Group III, Berlin, Springer, Vol. 11
  8. Choi, J. W., 2004, Statistical Approach to the Elastic Property Extraction and Planar Elastic Response of Polycrystalline Thin-Films, Ph.D. Dissertation, The Ohio State University Mechanical Engineering
  9. Tan, C. L., Gao, C. L., Afagh, F. F., 1992, “Anisotropic Stress Analysis of Inclusion Problems using the Boundary Integral Equation Method,” J. Strain Anal., Vol.27, No.2, pp. 67-76 https://doi.org/10.1243/03093247V272067
  10. Aliabadi, M. H., Sollero, P., 1998, “Crack Growth Analysis in Homogeneous Orthotropic Laminates,” Composites Science and Technology, Vol. 58, No.10, pp. 1697-1703 https://doi.org/10.1016/S0266-3538(97)00240-6
  11. Lee, K. R., Cho, S. B. and Choy, Y. S., 1990, “A Study of Fundamental Solution of BEM for Orthotropic Materials,” The Transactions of the KSAE, Vol.12, No.2, pp. 51-58
  12. Lee, K. R., Cho, S.B. and Choy, Y.S., 1991, “An Analysis of Stress Intensity Factor of Composite Materials by Boundary Element Method(BEM),” Transaction of the KSME, Vol.15, No.1, pp. 179-189
  13. Gibson. R. F., 1994, Principles of Composite Material Mechanics, McGRAW-Hill, pp. 46-58
  14. Jones, R. M., 1975, Mechanics of Composite Materials, McGraw-Hill, pp. 31-71
  15. Beer, G., 2001, Programming the Boundary Element Method–An Introduction for Engineers, John Willy & Sons LTD., pp. 247-285
  16. Aliabadi. M. H., 2002, The Boundary Element method–Applications in Solids and Structures, John Willy & Sons LTD., Vol. 2
  17. Atair Engineering, 2007, HyperMesh 8.0 User's Guide
  18. ABAQUS, 2006, ABAQUS Analysis User's Manuals Version 6.6