DOI QR코드

DOI QR Code

Chromosome Compositions of Four Cultivated Cucurbitaceae Species.

박과 작물 4종의 핵형분석

  • 권지연 (삼육대학교 과학기술대학 생명과학과) ;
  • 박혜미 (삼육대학교 과학기술대학 생명과학과) ;
  • 이성남 (삼육대학교 과학기술대학 생명과학과) ;
  • 최선희 (삼육대학교 과학기술대학 생명과학과) ;
  • 송경아 (삼육대학교 과학기술대학 생명과학과) ;
  • 김현희 (삼육대학교 과학기술대학 생명과학과)
  • Published : 2008.07.30

Abstract

The chromosome numbers and compositions were investigated in four cultivated species of Cucurbitaceae; Cucumis sativus L., Citrullus lanatus (Thunb.) Matsum. et Nakai, Cucumis melo L., Luffa cylindrica (L.) Roemer. through general aceto-orcein staining method. The chromosome compositions of four species were diploids of 2n=22, 2n=24 and 2n=26 respectively. The chromosomes were relatively small and showed gradual length degradation from $2.50\;{\mu}m$ to $2.16\;{\mu}m$ in Cucumis sativus, $3.71\;{\mu}m$ to $2.11\;{\mu}m$ in Cucumis melo, $3.20\;{\mu}m$ to $2.40\;{\mu}m$ in Citrullus lanatus and $3.17\;{\mu}m$ to $1.97\;{\mu}m$ in Luffa cylindrica. The chromosome types consisted of all metacentrics in Cucumis sativus, seven pairs submetacentrics and five pairs metacertrics in C. melo, four pairs of submetacentrics and seven pairs metacertrics in Citrullus lanatus, and two pairs submetacentrics and eleven pairs metacentrics in Luffa cylindrica (L.) Roemer.. The satellites were found in a pair of chromosomes in C. melo and two pairs in Luffa cylindrica. The chromosome compositions in these four species showed species-specific patterns and seemed to provide useful informations for breeding and molecular cytogenetic works on Cucurbitaceae.

박과 작물 4종(오이, 수박, 참외, 수세미)에 대한 핵형분석 연구를 수행하였다. 염색체 조성은 모두 이배체로 염색체 수와 형태적 특징에 있어서 종에 따라 차이를 나타냈다. 오이의 핵형은 2n=14=14m, 수박은 2n=22=22m으로 2번 염색체가 부수체를 지니며, 참외는 2n=24=18m+6sm으로 7번 염색체가 부수체를 지니고 있었다. 수세미는 2n=26=26m으로 1번 염색체가 부수체를 지니고 있었다. 핵형분석 결과 종에 따라 특징적인 염색체 수와 조정을 나타내었으며 종간 게놈 구성의 정보에 따른 박과 작물 육종화 작업의 기초 자료를 제공할 수 있으리라 본다.

Keywords

References

  1. Bang, J. W. 2001. Chromosome Index to Korean Native Plants. pp. 16-17. Korean Plant chromosome research center, Chungnam National University, Korea.
  2. Battalia, E. 1955. Chromosome morphology and terminology. Caryologia 8, 179-187. https://doi.org/10.1080/00087114.1955.10797556
  3. Bolkhovskikh, Z., V. Grif, T. Matvejeva and O. Zakharyeva. 1969. Chromosome Numbers of flowering plants. pp.242-245, Academy of Sciences of the USSR, Komarov Bot. Inst., Russia.
  4. Dane, F. 1991. Cytogenetics in genus Cucumis. In Tsuchiya, T. and P. K. Gupta (eds.), Chromosome engineering in plants, Part B; Genetics, Breeding, and Evolution. pp. 201-214, Elsevier, Amsterdam.
  5. Darlington, C. D. and A. P. Wylie. 1956. Chromosome Atlas of flowering plants. pp. 396, The MacMillan Company, New York.
  6. Dewet, M., G. Zhenhuai, Z. Chenghe, G. Suozhu and W. Ming. 1995. A study on chromosome number and karyotype of melons (Cucumis Melo L.). Acta Horticulture (ISHS) 402, 61-65.
  7. Idehen, E. O., O. B. Kehinde and A. E. Adegbite. 2006. Somatic chromosome counts and yields performance of some accessions of 'egusi' melon (Citrullus lanantus). Afr. J. Biotech. 5, 2049-2052.
  8. Kim, D. J. 2006. Senescence-associated cDNA clones from cucumber (Cucumis sativus L.) and their gene expression in cotyledon development. Bull. Sci. Ed. 22, 1-11.
  9. Kim, J. H., Y. W. Byeon, Y. H. Kim and C. G. Park. 2006. Biological Control of Thrips with Orius strigicollis (Poppius) (Hemiptera: Anthocoridae) and Amblyseius cucumeris (Oudemans) (Acari: Phytoseiidae) on Greenhouse Green pepper, Sweet pepper and Cucumber. Kor. J. Appl. Entomol. 45, 1-7.
  10. Koo, D. H. 2005. Large-scale organization of the cucumber genome and its evolution unrevealed by repetitive DNA sequences at the centromeric and telomeric regions. Ph.D. thesis of Chungnam Nat'l. University. Korea.
  11. Koo, D. H., H. W. Choi, J. Cho, Y. Hur and J. W. Bang. 2005. A high-resolution karyotype of cucumber (Cucumis sativus L. cv. 'Winter Long') revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome 48, 534-540. https://doi.org/10.1139/g04-128
  12. Koo, D. H., Y. Hur, D. C. Jin and J. W. Bang. 2002. Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. 'Winter Long') using C-banding fluorescence in situ hybridization. Mol. Cells 13, 413-418.
  13. Kurata, N., N. Iwata and T. Omura. 1981. Karyotype analysis in rice II. Identification of extra chromosomes in trisomic plants and banding structure on some chromosomes. Jpn. J. Genet. 56, 41-50. https://doi.org/10.1266/jjg.56.41
  14. Lee, Y. N. 1996. Flora of Korea. pp. 516. Kyohak Publ., Seoul.
  15. Levan, A., K. Fredga and A. Sandberg. 1964. Nomenclature for centromeric position in chromosomes. Hereditas 52, 201-220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
  16. Naranjo, C. A., L. Poggio and P. E. Brandham. 1983. A practical method of chromosome classificationon the basis of centromere position. Genetica 62, 51-53. https://doi.org/10.1007/BF00123310
  17. Ramachandran, C. and V. S. Seshadri. 1986. Cytological analysis of the genome of cucumber (Cucumis sativus L.) and Muskmelon (Cucumis melo. L.). Pflanzenzüchtg 96, 25-38.
  18. Shippers, R. R. 2000. African indigenous vegetables, pp. 57-58. An overview of the cultivated species, Natural Resources institute ACP-EU Technical Center for Agriculture and Rural Cooperation. UK.
  19. Singh, R. J., H. H. Kim and T. Hymowitz. 2001. Distribution of rDNA loci in the genus Glycine Willd.. Thoer. Appl. Genet. 103, 212-218. https://doi.org/10.1007/s001220100591
  20. Trivedi, R. N. and R. P. Roy. 1970. Cytological studies in Cucumis and Citrullus. Cytol. 35, 561-569. https://doi.org/10.1508/cytologia.35.561

Cited by

  1. Cytological details of Luffa cylindrica (L.)M.Roem. a meiotically disturbed diploid vol.60, pp.1, 2017, https://doi.org/10.1007/s13237-016-0186-z
  2. Karyomorphological studies of six commercially cultivated edible cucurbits: bitter gourd, sponge gourd, ridge gourd, snake gourd, ash gourd and cucumber vol.71, pp.2, 2018, https://doi.org/10.1080/00087114.2018.1450800