Browse > Article
http://dx.doi.org/10.5352/JLS.2008.18.7.1019

Chromosome Compositions of Four Cultivated Cucurbitaceae Species.  

Kwon, Ji-Yeon (Department of Life Science, Sahmyook Univ.)
Park, Hye-Mi (Department of Life Science, Sahmyook Univ.)
Lee, Sung-Nam (Department of Life Science, Sahmyook Univ.)
Choi, Sun-Hee (Department of Life Science, Sahmyook Univ.)
Song, Kyung-A (Department of Life Science, Sahmyook Univ.)
Kim, Hyun-Hee (Department of Life Science, Sahmyook Univ.)
Publication Information
Journal of Life Science / v.18, no.7, 2008 , pp. 1019-1022 More about this Journal
Abstract
The chromosome numbers and compositions were investigated in four cultivated species of Cucurbitaceae; Cucumis sativus L., Citrullus lanatus (Thunb.) Matsum. et Nakai, Cucumis melo L., Luffa cylindrica (L.) Roemer. through general aceto-orcein staining method. The chromosome compositions of four species were diploids of 2n=22, 2n=24 and 2n=26 respectively. The chromosomes were relatively small and showed gradual length degradation from $2.50\;{\mu}m$ to $2.16\;{\mu}m$ in Cucumis sativus, $3.71\;{\mu}m$ to $2.11\;{\mu}m$ in Cucumis melo, $3.20\;{\mu}m$ to $2.40\;{\mu}m$ in Citrullus lanatus and $3.17\;{\mu}m$ to $1.97\;{\mu}m$ in Luffa cylindrica. The chromosome types consisted of all metacentrics in Cucumis sativus, seven pairs submetacentrics and five pairs metacertrics in C. melo, four pairs of submetacentrics and seven pairs metacertrics in Citrullus lanatus, and two pairs submetacentrics and eleven pairs metacentrics in Luffa cylindrica (L.) Roemer.. The satellites were found in a pair of chromosomes in C. melo and two pairs in Luffa cylindrica. The chromosome compositions in these four species showed species-specific patterns and seemed to provide useful informations for breeding and molecular cytogenetic works on Cucurbitaceae.
Keywords
Cucurbitaceae; karyotype; Cucumis; Citrullus; Luffa;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, Y. N. 1996. Flora of Korea. pp. 516. Kyohak Publ., Seoul.
2 Bolkhovskikh, Z., V. Grif, T. Matvejeva and O. Zakharyeva. 1969. Chromosome Numbers of flowering plants. pp.242-245, Academy of Sciences of the USSR, Komarov Bot. Inst., Russia.
3 Bang, J. W. 2001. Chromosome Index to Korean Native Plants. pp. 16-17. Korean Plant chromosome research center, Chungnam National University, Korea.
4 Dane, F. 1991. Cytogenetics in genus Cucumis. In Tsuchiya, T. and P. K. Gupta (eds.), Chromosome engineering in plants, Part B; Genetics, Breeding, and Evolution. pp. 201-214, Elsevier, Amsterdam.
5 Kim, J. H., Y. W. Byeon, Y. H. Kim and C. G. Park. 2006. Biological Control of Thrips with Orius strigicollis (Poppius) (Hemiptera: Anthocoridae) and Amblyseius cucumeris (Oudemans) (Acari: Phytoseiidae) on Greenhouse Green pepper, Sweet pepper and Cucumber. Kor. J. Appl. Entomol. 45, 1-7.   과학기술학회마을
6 Battalia, E. 1955. Chromosome morphology and terminology. Caryologia 8, 179-187.   DOI
7 Koo, D. H. 2005. Large-scale organization of the cucumber genome and its evolution unrevealed by repetitive DNA sequences at the centromeric and telomeric regions. Ph.D. thesis of Chungnam Nat'l. University. Korea.
8 Koo, D. H., H. W. Choi, J. Cho, Y. Hur and J. W. Bang. 2005. A high-resolution karyotype of cucumber (Cucumis sativus L. cv. 'Winter Long') revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome 48, 534-540.   DOI   ScienceOn
9 Idehen, E. O., O. B. Kehinde and A. E. Adegbite. 2006. Somatic chromosome counts and yields performance of some accessions of 'egusi' melon (Citrullus lanantus). Afr. J. Biotech. 5, 2049-2052.
10 Kim, D. J. 2006. Senescence-associated cDNA clones from cucumber (Cucumis sativus L.) and their gene expression in cotyledon development. Bull. Sci. Ed. 22, 1-11.
11 Darlington, C. D. and A. P. Wylie. 1956. Chromosome Atlas of flowering plants. pp. 396, The MacMillan Company, New York.
12 Dewet, M., G. Zhenhuai, Z. Chenghe, G. Suozhu and W. Ming. 1995. A study on chromosome number and karyotype of melons (Cucumis Melo L.). Acta Horticulture (ISHS) 402, 61-65.
13 Ramachandran, C. and V. S. Seshadri. 1986. Cytological analysis of the genome of cucumber (Cucumis sativus L.) and Muskmelon (Cucumis melo. L.). Pflanzenzüchtg 96, 25-38.
14 Shippers, R. R. 2000. African indigenous vegetables, pp. 57-58. An overview of the cultivated species, Natural Resources institute ACP-EU Technical Center for Agriculture and Rural Cooperation. UK.
15 Singh, R. J., H. H. Kim and T. Hymowitz. 2001. Distribution of rDNA loci in the genus Glycine Willd.. Thoer. Appl. Genet. 103, 212-218.   DOI   ScienceOn
16 Trivedi, R. N. and R. P. Roy. 1970. Cytological studies in Cucumis and Citrullus. Cytol. 35, 561-569.   DOI
17 Levan, A., K. Fredga and A. Sandberg. 1964. Nomenclature for centromeric position in chromosomes. Hereditas 52, 201-220.   DOI
18 Naranjo, C. A., L. Poggio and P. E. Brandham. 1983. A practical method of chromosome classificationon the basis of centromere position. Genetica 62, 51-53.   DOI
19 Koo, D. H., Y. Hur, D. C. Jin and J. W. Bang. 2002. Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. 'Winter Long') using C-banding fluorescence in situ hybridization. Mol. Cells 13, 413-418.
20 Kurata, N., N. Iwata and T. Omura. 1981. Karyotype analysis in rice II. Identification of extra chromosomes in trisomic plants and banding structure on some chromosomes. Jpn. J. Genet. 56, 41-50.   DOI