The effect of friction on magnetorheological fluids

  • Li, W.H. (School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong) ;
  • Zhang, X.Z. (School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong)
  • Published : 2008.06.30

Abstract

This paper presents an experimental approach to study the effect of friction on magnerorheological (MR) fluids. Both steady and dynamic modes were employed to investigate MR fluid behaviors. The experimental results indicate that the total MR effects are dominated by two factors: magnetic force and friction force. Conventionally, the magnetic force contribution to MR effect has been intensively studied while the friction force effect has attracted less attention. This study provides a method to quantitatively predict the friction contribution to the total MR effect. It may be used to effectively analyze enhanced MR effects reported by other groups. Also, it might provide good guidance to develop high-efficiency MR fluids.

Keywords

References

  1. Bossis, G., E. Lemaire, O. Volkova and H. Clercx, 1997, Yield stress in magnetorheological and electrorheological fluids: a comparison between microscopic and macroscopic structural models, Journal of Rheology 41(3), 687-704 https://doi.org/10.1122/1.550838
  2. Cho, M. S., Y. H. Cho, H. J. Choi and M. S. Jhon, 2003, Synthesis and electrorheological characteristics of polyanilinecoated poly(methyl methacrylate) microsphere: size effect, Langmuir 19, 5875-5881 https://doi.org/10.1021/la026969d
  3. Cho, M. S., S. T. Lim, I. B. Jang, H. J. Choi and M. S. Jhon, 2004, Encapsulation of spherical iron-particlewith PMMA and its magnetorheological particles, IEEE Transactions on Magnetics 40(4), 3036-3038 https://doi.org/10.1109/TMAG.2004.830413
  4. Ginder, J. M., L. C. Davis and L. D. Elie, 1996, Rheology of magnetorheological fluids: models and measurements, International Journal of Modern Physics B 10(23-24), 3293-3303 https://doi.org/10.1142/S0217979296001744
  5. Hitchcock G. H., X. J. Wang and F. Gordaninejad, 2007, A new bypass magnetorheological fluid damper, Journal of Vibration and Acoustics- Transactions of the ASME 129(5), 641-647 https://doi.org/10.1115/1.2775514
  6. Jang, I. B., H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi and M. S. Jhon, 2005, Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids, Journal of Applied Physics 97, 10Q912-1-10Q912-3 https://doi.org/10.1063/1.1853835
  7. Jolly, M. R., J. D. Carlson and B. C. Munoz, 1996, A model of the behavior of magnetorheological materials, Smart Materials and Structures 5, 607-614 https://doi.org/10.1088/0964-1726/5/5/009
  8. Jordan, T. C., M. T. Shaw and T. C. B. McLeish, 1992, Viscoelastic response of electrorheological fluids. II. field strength and strain dependence, Journal of Rheology 36(3), 441-463 https://doi.org/10.1122/1.550353
  9. Li W. H., G. Z. Yao, G. Chen, S. H. Yeo and F. F. Yap, 2000, Testing and steady state modeling of a linear MR damper under sinusoidal loading, Smart Materials and Structures 9(1), 95- 102 https://doi.org/10.1088/0964-1726/9/1/310
  10. Li, W. H. and H. Du, 2003, Design and experimental evaluation of a magnetorheological brake", International Journal of Advanced Manufacturing Technology 21(6), 438-445 https://doi.org/10.1007/s001700300051
  11. Li, W. H., H. Du, G. Chen, S. H. Yeo and N. Guo, 2003, Nonlinear viscoelastic properties of MR fluids under large-amplitude- oscillatory-shear, Rheologica Acta 42, 280-286
  12. McLeish, T. C., B. T. Jordan and M. T. Shaw, 1991, Viscoelastic response of electrorheological fluids. I. frequency dependence, Journal of Rheology 35(3), 427-448 https://doi.org/10.1122/1.550222
  13. LORD technical data, MRF-132DG magneto-rheological fluid, http://www.lordfulfillment.com/upload/DS7015.pdf
  14. Rosensweig, R. E., 1995, On magnetorheology and electrorheology as states of unsymmetric stress, Journal of Rheology 39(1), 179-192 https://doi.org/10.1122/1.550699
  15. See, H., S. Mackenzie and B. T. Chua, 2006, Effect of compression on the response of a magneto-rheological suspension, Korea-Australia Rheology Journal 18(3), 121-126
  16. Tang, X. L. and Conrad, H., 2000, An analytical model for magnetorheological fluids, Journal of Physics D-Applied Physics 33(23), 3026-3032 https://doi.org/10.1088/0022-3727/33/23/304
  17. Tang, X., X. Zhang, R. Tao and Y. M. Rong, 2000, Structureenhanced yield stress of magnetorheological fluids, Journal of Applied Physics 87(5), 2634-2638 https://doi.org/10.1063/1.372229
  18. Tao, R., 2001, Super-strong magnetorheological fluids, J. Phys.:Condens. Matter 13, R979-R999 https://doi.org/10.1088/0953-8984/13/50/202
  19. Wang, X. J. and F. Gordaninejad, 1999, Flow analysis of fieldcontrollable, electro- and magneto-rheological fluids using Herschel-Bulkley model, Journal of Intelligent Material Systems and Structures 10(8), 601-608 https://doi.org/10.1106/P4FL-L1EL-YFLJ-BTRE
  20. Wu, W. P., B. Y. Zhao, Q. Wu, L. S. Chen and K. A. Hu, 2006, The strengthening effect of guar gum on the yield stress of magnetorheological fluid, Smart Materials and Structures 15(4), N94-N98 https://doi.org/10.1088/0964-1726/15/4/N04
  21. Wen, W. J., X. X. Huang, S. H. Yang, K. Q. Lu and P. Sheng, 2003, The giant electrorheological effect in suspensions of nanoparticles, Nature Materials 2(11), 727-730 https://doi.org/10.1038/nmat993
  22. Zhang, X. Z., X. L. Gong, P. Q. Zhang and Q. M. Wang, 2004, Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids, Journal of Applied Physics 96(4), 2359-2364 https://doi.org/10.1063/1.1773379