Browse > Article

The effect of friction on magnetorheological fluids  

Li, W.H. (School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong)
Zhang, X.Z. (School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong)
Publication Information
Korea-Australia Rheology Journal / v.20, no.2, 2008 , pp. 45-50 More about this Journal
Abstract
This paper presents an experimental approach to study the effect of friction on magnerorheological (MR) fluids. Both steady and dynamic modes were employed to investigate MR fluid behaviors. The experimental results indicate that the total MR effects are dominated by two factors: magnetic force and friction force. Conventionally, the magnetic force contribution to MR effect has been intensively studied while the friction force effect has attracted less attention. This study provides a method to quantitatively predict the friction contribution to the total MR effect. It may be used to effectively analyze enhanced MR effects reported by other groups. Also, it might provide good guidance to develop high-efficiency MR fluids.
Keywords
magnetorheological fluids; friction effect;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 12  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 Jordan, T. C., M. T. Shaw and T. C. B. McLeish, 1992, Viscoelastic response of electrorheological fluids. II. field strength and strain dependence, Journal of Rheology 36(3), 441-463   DOI
2 McLeish, T. C., B. T. Jordan and M. T. Shaw, 1991, Viscoelastic response of electrorheological fluids. I. frequency dependence, Journal of Rheology 35(3), 427-448   DOI
3 See, H., S. Mackenzie and B. T. Chua, 2006, Effect of compression on the response of a magneto-rheological suspension, Korea-Australia Rheology Journal 18(3), 121-126   과학기술학회마을
4 Tang, X. L. and Conrad, H., 2000, An analytical model for magnetorheological fluids, Journal of Physics D-Applied Physics 33(23), 3026-3032   DOI   ScienceOn
5 Tang, X., X. Zhang, R. Tao and Y. M. Rong, 2000, Structureenhanced yield stress of magnetorheological fluids, Journal of Applied Physics 87(5), 2634-2638   DOI   ScienceOn
6 Zhang, X. Z., X. L. Gong, P. Q. Zhang and Q. M. Wang, 2004, Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids, Journal of Applied Physics 96(4), 2359-2364   DOI   ScienceOn
7 Tao, R., 2001, Super-strong magnetorheological fluids, J. Phys.:Condens. Matter 13, R979-R999   DOI   ScienceOn
8 Cho, M. S., S. T. Lim, I. B. Jang, H. J. Choi and M. S. Jhon, 2004, Encapsulation of spherical iron-particlewith PMMA and its magnetorheological particles, IEEE Transactions on Magnetics 40(4), 3036-3038   DOI   ScienceOn
9 Li, W. H. and H. Du, 2003, Design and experimental evaluation of a magnetorheological brake", International Journal of Advanced Manufacturing Technology 21(6), 438-445   DOI
10 Jolly, M. R., J. D. Carlson and B. C. Munoz, 1996, A model of the behavior of magnetorheological materials, Smart Materials and Structures 5, 607-614   DOI   ScienceOn
11 Hitchcock G. H., X. J. Wang and F. Gordaninejad, 2007, A new bypass magnetorheological fluid damper, Journal of Vibration and Acoustics- Transactions of the ASME 129(5), 641-647   DOI   ScienceOn
12 LORD technical data, MRF-132DG magneto-rheological fluid, http://www.lordfulfillment.com/upload/DS7015.pdf
13 Li, W. H., H. Du, G. Chen, S. H. Yeo and N. Guo, 2003, Nonlinear viscoelastic properties of MR fluids under large-amplitude- oscillatory-shear, Rheologica Acta 42, 280-286
14 Wang, X. J. and F. Gordaninejad, 1999, Flow analysis of fieldcontrollable, electro- and magneto-rheological fluids using Herschel-Bulkley model, Journal of Intelligent Material Systems and Structures 10(8), 601-608   DOI
15 Jang, I. B., H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi and M. S. Jhon, 2005, Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids, Journal of Applied Physics 97, 10Q912-1-10Q912-3   DOI
16 Bossis, G., E. Lemaire, O. Volkova and H. Clercx, 1997, Yield stress in magnetorheological and electrorheological fluids: a comparison between microscopic and macroscopic structural models, Journal of Rheology 41(3), 687-704   DOI   ScienceOn
17 Ginder, J. M., L. C. Davis and L. D. Elie, 1996, Rheology of magnetorheological fluids: models and measurements, International Journal of Modern Physics B 10(23-24), 3293-3303   DOI   ScienceOn
18 Rosensweig, R. E., 1995, On magnetorheology and electrorheology as states of unsymmetric stress, Journal of Rheology 39(1), 179-192   DOI   ScienceOn
19 Wu, W. P., B. Y. Zhao, Q. Wu, L. S. Chen and K. A. Hu, 2006, The strengthening effect of guar gum on the yield stress of magnetorheological fluid, Smart Materials and Structures 15(4), N94-N98   DOI   ScienceOn
20 Li W. H., G. Z. Yao, G. Chen, S. H. Yeo and F. F. Yap, 2000, Testing and steady state modeling of a linear MR damper under sinusoidal loading, Smart Materials and Structures 9(1), 95- 102   DOI   ScienceOn
21 Wen, W. J., X. X. Huang, S. H. Yang, K. Q. Lu and P. Sheng, 2003, The giant electrorheological effect in suspensions of nanoparticles, Nature Materials 2(11), 727-730   DOI   ScienceOn
22 Cho, M. S., Y. H. Cho, H. J. Choi and M. S. Jhon, 2003, Synthesis and electrorheological characteristics of polyanilinecoated poly(methyl methacrylate) microsphere: size effect, Langmuir 19, 5875-5881   DOI   ScienceOn