Browse > Article

Antifungal Activity of Valinomycin, a Peptide Antibiotic Produced by Streptomyces sp. Strain M10 Antagonistic to Botrytis cinerea  

Park, Cheol-Nam (School of Life Sciences and Biotechnology, Korea University)
Lee, Jung-Min (School of Life Sciences and Biotechnology, Korea University)
Lee, Dong-Ho (School of Life Sciences and Biotechnology, Korea University)
Kim, Beom-Seok (School of Life Sciences and Biotechnology, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.5, 2008 , pp. 880-884 More about this Journal
Abstract
A strain of Streptomyces sp. (M10) antagonistic to Botrytis cinerea was isolated from orchard soil obtained from Jeju Island, Korea. An antifungal substance (CN1) was purified from the culture extracts of the strain, and then identified as valinomycin through extensive spectroscopic analyses. Valinomycin showed potent in vitro antifungal activity against Botrytis cinerea and also in vivo control efficacy against Botrytis blight development in cucumber plants. Overall, the disease control efficacy of valinomycin was similar to that of vinclozolin, a commercial fungicide. This study provides the first report on the disease control efficacy of valinomycin against Botrytis blight.
Keywords
Valinomycin; peptide antibiotics; Botrytis cinerea; plant disease control;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Andersson, M. A., R. Mikkola, R. Kroppenstedt, F. A. Rainey, J. Peltola, J. Helin, K. Sivonen, and M. S. Salkinoja-Salonen. 1998. Mitochondrial toxin produced by Streptomyces griseus strains isolated from indoor environment is valinomycin. Appl. Environ. Microbiol. 64: 4767-4773
2 Barnes, S. E. and M. W. Shaw. 2002. Factors affecting symptom production by latent Botrytis cinerea in Primula $\times$ polyantha. Plant Pathol. 51: 746-754   DOI   ScienceOn
3 Nair, M. G., A. Chandra, and D. L. Thorogood. 1994. Gopalamicin, an antifungal macrodiolide produced by soil actinomycetes. J. Agric. Food Chem. 42: 2308-2310   DOI   ScienceOn
4 Pressman, B. 1976. Biological applications of ionophores. Annu. Rev. Biochem. 45: 501-530   DOI   ScienceOn
5 Shirling, E. B. and D. Gottlieb. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340   DOI
6 Yun, B., E. M. Kwon, J. Kim, and S. H. Yu. 2007. Antifungal cyclopeptolide from fungal saprophytic antagonist Ulocladium atrum. J. Microbiol. Biotechnol. 17: 1217-1220   과학기술학회마을
7 Maruyama, M., S. Yamauchi, K. Akiyama, T. Sugahara, T. Kishida, and Y. Koba. 2007. Antibacterial activity of virgatusinrelated compound. Biosci. Biotechnol. Biochem. 71: 677-680   DOI   ScienceOn
8 Heisey, R. M., J. Huang, S. K. Mishra, J. E. Keller, J. R. Miller, A. R. Putnam, and T. D. J. D'Silva. 1988. Production of valinomycin, an insecticidal antibiotic, by Streptomyces griseus var. flexipertum var. nov. J. Agric. Food Chem. 36: 1283-1286   DOI
9 Pettit, G. R., R. Tan, N. Melody, J. M. Kielty, R. K. Pettit, D. L. Herald, B. E. Tucker, L. P. Mallavia, D. L. Doubek, and J. M. Schmidt. 1999. Antineoplastic agents. Part 409: Isolation and structure of montanastatin from a terrestrial Actinomycete. Bioorg. Med. Chem. 7: 895-899   DOI   ScienceOn
10 Samson-Himmelstjerna, G. V., A. Harder, N. C. Sangster, and G. C. Coles. 2005. Efficacy of two cyclooctadepsipeptides, PF1022A and emodepside, against anthelmintic resistant nematodes in sheep and cattle. Parasitology 130: 343-347   DOI   ScienceOn
11 Koloditskaia, A. T., I. N. Blinova, G. M. Smirnova, and A. S. Khokhlov. 1975. Actinomyces cyaneofuscatus, producer of valinomycin. A study of its pigments and antibiotics. Izv Akad Nauk SSSR Biol. 5: 694-700
12 Murray, T., F. C. Leighton, and B. Seddon. 1986. Inhibition of fungal spore germination by gramicidin S and its potential use as a biocontrol against fungal plant pathogens. Lett. Appl. Microbiol. 3: 5-7   DOI
13 Haynes, D. H., A. Kowalsky, and B. Pressman. 1969. Application of nuclear magnetic resonance to the conformational changes in valinomycin during complexation. J. Biol. Chem. 244: 502-505
14 Waksman, S. A. 1961. Classification, Identification and Descriptions of Genera and Species. The Williams & Willkins Co., Baltimore
15 Kim, C. S., E. K. Lim, K. H. Choi, H. G. Kong, D. W. Kim, S. Lee, B. J. Moon, S. H. Lee, and H. J. Kim. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J. Microbiol. Biotechnol. 17: 438-444   과학기술학회마을
16 Seo, Y. S., J. C. Kim, B. S. Kim, Y. W. Lee, and K. Y. Cho. 1996. Isolation and identification of antifungal substances produced by Fusarium sp. BYA-1. Plant Pathol. J. 12: 72-79
17 Sharom, F. J., P. Lu, R. Liu, and X. Yu. 1988. Linear and cyclic peptides as substrates and modulators of Pglycoprotein: Peptide binding and effects on drug transport and accumulation. Biochem. J. 333: 621-630
18 Williams, S. T., M. E. Saharpe, J. G. Holt, R. G. E. Murray, D. J. Brener, N. R. Krieg, J. W. Mouldar, N. Pfennig, P. H. A. Sneath, and J. T. Staley. 1989. Bergery's Manual of Systematic Bacteriology, Vol. 4. The Williams & Wilkins Co., Baltimore
19 Brockmann, H. and G. Schmidt-Kastner. 1955. Valinomycin. I. uber Antibiotica aus Actinomyceten. XXVII. Chem. Ber. 88: 57   DOI
20 Kim, B. S. and B. K. Hwang. 2003. Biofungicides. In D. K. Arora, P. D. Bridge, and D. Bhatnager (eds.). Handbook of Fungal Biotechnology. Dekker, New York
21 Choi, G. J., J. Kim, K. S. Jang, H. K. Lim, I. Park, S. Shin, and K. Y. Cho. 2006. In vivo antifungal activities of 67 plant fruit extracts against six plant pathogenic fungi. J. Microbiol. Biotechnol. 16: 491-495   과학기술학회마을
22 Choi, G. J., H. J. Lee, and K. Y. Cho. 1996. Lipid peroxidation and membrane disruption by vinclozolin in dicarboximidesusceptible and -resistant isolates of Botrytis cinerea. Pesticide Biochem. Physiol. 55: 29-39   DOI   ScienceOn
23 Paananen, A., R. Mikkola, T. Sareneva, S. Matikainen, M. Andersson, I. Julkunen, M. S. Salkinoja-Salonen, and T. Timonen. 2000. Inhibition of human NK cell function by valinomycin, a toxin from Streptomyces griseus in indoor air. Infect. Immun. 68: 165-169   DOI   ScienceOn
24 Shin, D., M. S. Park, S. Jung, M. S. Lee, K. H. Lee, K. S. Bae, and S. B. Kim. 2007. Plant growth-promoting potential of endophytic bacteria isolated from roots of coastal sand dune plants. J. Microbiol. Biotechnol. 17: 1361-1368   과학기술학회마을
25 Teplova, V. V., R. Mikkola, A. A. Tonshin, N. L. Saris, and M. S. Salkinoja-Salonen. 2006. The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration. Toxicol. Appl. Pharmacol. 210: 39-46   DOI   ScienceOn
26 Cheng, Y.-Q. 2006. Deciphering the biosynthetic codes for the potent anti-SARS-CoV cyclodepsipeptide valinomycin in Streptomyces tsusimaensis ATCC 15141. ChemBioChem 7: 471-477   DOI   ScienceOn
27 Perkins, J. B., S. K. Guterman, C. L. Howitt, V. E. N. Williams, and J. Pero. 1990. Streptomyces genes involved in biosynthesis of the peptide antibiotic valinomycin. J. Bacteriol. 172: 3108-3116   DOI
28 Schaal, K. P. 1985. Identification of clinically significant Actinomycetes and related bacteria using chemical techniques. In M. Goodfellow and D. E. Minnikin (eds.). Chemical Methods in Bacterial Systematics. Academic Press, London
29 Wardlow, L. R. and T. M. O'Neill. 1992. Management strategies for controlling pests and diseases in glasshouse crops. Pestic. Sci. 36: 341-347   DOI   ScienceOn