Expressed Sequence Tags of Trichinella spiralis Muscle Stage Larvae

  • Park, Hae-Kyung (Department of Internal Medicine, School of Medicine, Pusan National University) ;
  • Chang, Seong-Won (Department of Parasitology, School of Medicine, Pusan National University) ;
  • Kang, Se-Won (Department of Parasitology and Malariology, PICR, College of Medicine and Frontier Inje Research for Science and Technology, Inje University) ;
  • Cho, Min-Kyoung (Department of Parasitology, School of Medicine, Pusan National University) ;
  • Choi, Sun-Hee (Department of Parasitology, School of Medicine, Pusan National University) ;
  • Hong, Yeon-Chul (Department of Parasitology, School of Medicine, Kyungpook National University) ;
  • Lee, Yong-Seok (Department of Parasitology and Malariology, PICR, College of Medicine and Frontier Inje Research for Science and Technology, Inje University) ;
  • Jeong, Hae-Jin (Department of Parasitology, School of Medicine, Pusan National University) ;
  • Yu, Hak-Sun (Department of Parasitology, School of Medicine, Pusan National University)
  • Published : 2008.06.30

Abstract

In order to obtain greater insight into the relevant genomic expression patterns of Trichinella spiralis, 992 expressed sequence tags (ESTs) were collected from a cDNA library of T. spiralis muscle stage larvae and assembled into 60 clusters and 385 singletons. Of them, 445 (44.7%) ESTs were annotated to their homologous genes, and small fractions were matched to known genes of nematodes. The annotated ESTs were classified into 25 eukaryotic orthologous groups (KOG). Cytochrome C oxidase (34 clones) was found to be most frequent species.

Keywords

References

  1. Clausen MR, Meyer CN, Krantz T, Moser C, Gomme G, Kayser L, Albrectsen J, Kapel CM, Bygbjerg IC. Trichinella infection and clinical disease. QJM 1996; 89: 631-636. https://doi.org/10.1093/qjmed/89.8.631
  2. Pozio E, Darwin Murrell K. Systematics and epidemiology of Trichinella. Adv Parasitol 2006; 63: 367-439. https://doi.org/10.1016/S0065-308X(06)63005-4
  3. Katz M, Despommier DD, Gwadz RW. Parasitic Diseases. 2nd ed. New York, USA. Springer-Verlag. 1989.
  4. Campbell WC. Trichinella and trichinosis. New York, USA. Plenum Press. 1983.
  5. Mahida YR. Host-parasite interactions in rodent nematode infections. J Helminthol 2003; 77: 125-131. https://doi.org/10.1079/JOH2003172
  6. Mitreva M, Jasmer DP. Biology and genome of Trichinella spiralis. WormBook 2006; 1-21.
  7. Hudson DF, Morrison C, Ruchaud S, Earnshaw WC. Reverse genetics of essential genes in tissue-culture cells: 'dead cells talking'. Trends Cell Biol 2002; 12: 281-287. https://doi.org/10.1016/S0962-8924(02)02281-X
  8. Serruto D, Rappuoli R. Post-genomic vaccine development. FEBS lett 2006; 580: 2985-2992. https://doi.org/10.1016/j.febslet.2006.04.084
  9. Wolfsberg TG, Landsman D. A comparison of expressed sequence tags (ESTs) to human genomic sequences. Nucleic Acids Res 1997; 25: 1626-1632. https://doi.org/10.1093/nar/25.8.1626
  10. de Koning AP, Tartar A, Boucias DG, Keeling PJ. Expressed sequence tag (EST) survey of the highly adapted green algal parasite, Helicosporidium. Protist 2005; 156: 181-190. https://doi.org/10.1016/j.protis.2005.02.005
  11. Ramirez M, Graham MA, Blanco-Lopez L, Silvente S, Medrano- Soto A, Blair MW, Hernandez G, Vance CP, Lara M. Sequencing and analysis of common bean ESTs. Building a foundation for functional genomics. Plant Physiol 2005; 137: 1211-1227. https://doi.org/10.1104/pp.104.054999
  12. Tetteh KK, Loukas A, Tripp C, Maizels RM. Identification of abundantly expressed novel and conserved genes from the infective larval stage of Toxocara canis by an expressed sequence tag strategy. Infect Immun 1999; 67: 4771-4779.
  13. Maizels RM, Tetteh KK, Loukas A. Toxocara canis: genes expressed by the arrested infective larval stage of a parasitic nematode. Int J Parasitol 2000; 30: 495-508. https://doi.org/10.1016/S0020-7519(00)00022-9
  14. Ng ST, Sanusi Jangi M, Shirley MW, Tomley FM, Wan KL. Comparative EST analyses provide insights into gene expression in two asexual developmental stages of Eimeria tenella. Exp Parasitol 2002; 101: 168-173. https://doi.org/10.1016/S0014-4894(02)00109-1
  15. Blaxter M, Daub J, Guiliano D, Parkinson J, Whitton C, Filarial Genome Project. Pathogen genomes and human health. The Brugia malayi genome project: expressed sequence tags and gene discovery. Trans R Soc Trop Med Hyg 2002; 96: 7-17. https://doi.org/10.1016/S0035-9203(02)90224-5
  16. Thompson FJ, Mitreva M, Barker GL, Martin J, Waterston RH, Mc- Carter JP, Viney ME. An expressed sequence tag analysis of the lifecycle of the parasitic nematode Strongyloides ratti. Mol Biochem Parasitol 2005; 142: 32-46. https://doi.org/10.1016/j.molbiopara.2005.03.006
  17. Yu HS, Park SK, Lee KH, Lee SJ, Choi SH, Ock MS, Jeong HJ. Anisakis simplex: analysis of expressed sequence tags (ESTs) of third-stage larva. Exp Parasitol 2007; 117: 51-56. https://doi.org/10.1016/j.exppara.2007.03.009
  18. Akao T, Sano M, Yamada O, Akeno T, Fujii K, Goto K, Ohashi- Kunihiro S, Takase K, Yasukawa-Watanabe M, Yamaguchi K, Kurihara Y, Maruyama J, Juvvadi PR, Tanaka A, Hata Y, Koyama Y, Yamaguchi S, Kitamoto N, Gomi K, Abe K, Takeuchi M, Kobayashi T, Horiuchi H, Kitamoto K, Kashiwagi Y, Machida M, Akita O. Analysis of expressed sequence tags from the fungus Aspergillus oryzae cultured under different conditions. DNA Res 2007; 14: 47-57. https://doi.org/10.1093/dnares/dsm008
  19. Schwartz EF, Diego-Garcia E, Rodriguez de la Vega RC, Possani LD. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC genomics 2007; 8: 119. https://doi.org/10.1186/1471-2164-8-119
  20. Wakelin D, Lloyd M. Immunity to primary and challenge infections of Trichinella spiralis in mice: a re-examination of conventional parameters. Parasitology 1976; 72: 173-182. https://doi.org/10.1017/S0031182000048472
  21. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998; 8: 186-194. https://doi.org/10.1101/gr.8.3.186
  22. Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998; 8: 175-185. https://doi.org/10.1101/gr.8.3.175
  23. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 2003; 19: 651-652. https://doi.org/10.1093/bioinformatics/btg034
  24. Altschul MS. The circumcision controversy. Am Fam Physician 1990; 41: 817-820.
  25. Altschul SF, Lipman DJ. Protein database searches for multiple alignments. Proc Natl Acad Sci USA 1990; 87: 5509-5513. https://doi.org/10.1073/pnas.87.14.5509
  26. Cap\'{o} VA, Despommier DD, Polvere RI. Trichinella spiralis: vascular endothelial growth factor is up-regulated within the nurse cell during the early phase of its formation. J Parasitol 1998; 84: 209-214. https://doi.org/10.2307/3284472
  27. Appleton JA, Romaris F. A pivotal role for glycans at the interface between Trichinella spiralis and its host. Vet Parasitol 2001; 101: 249-260. https://doi.org/10.1016/S0304-4017(01)00570-2
  28. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003; 4: 41. https://doi.org/10.1186/1471-2105-4-41
  29. Capaldi RA. Structure and assembly of cytochrome c oxidase. Arch Biochem Biophys 1990; 280: 252-262. https://doi.org/10.1016/0003-9861(90)90327-U
  30. Michel H, Behr J, Harrenga A, Kannt A. Cytochrome c oxidase: structure and spectroscopy. Annu Rev Biophys Biomol Struct 1998; 27: 329-356. https://doi.org/10.1146/annurev.biophys.27.1.329
  31. Trap C, Fu B, Le Guerhier F, Liu M, Le Rhun D, Romand T, Perret C, Blaga R, Boireau P. Cloning and analysis of a cDNA encoding a putative serine protease comprising two trypsin-like domains of Trichinella spiralis. Parasitol Res 2006; 98: 288-294. https://doi.org/10.1007/s00436-005-0075-x
  32. Moczon T, Wranicz M. Trichinella spiralis: proteinases in the larvae. Parasitol Res 1999; 85: 47-58. https://doi.org/10.1007/s004360050506
  33. Arita M, Suematsu T, Osanai A, Inaba T, Kamiya H, Kita K, Sisido M, Watanabe Y, Ohtsuki T. An evolutionary intermediate state of mitochondrial translation systems found in Trichinella species of parasitic nematodes: co-evolution of tRNA and EF-Tu. Nucleic Acids Res 2006; 34: 5291-5299. https://doi.org/10.1093/nar/gkl526
  34. Ohtsuki T, Sato A, Watanabe Y, Watanabe K. A unique serine-specific elongation factor Tu found in nematode mitochondria. Nat Struct Biol 2002; 9: 669-673. https://doi.org/10.1038/nsb826
  35. Lavrov DV, Brown WM. Trichinella spiralis mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAS and has a gene arrangement relatable to those of coelomate metazoans. Genetics 2001; 157: 621-637.