생물학적(生物學的) 방법(方法)에 의한 폐기물(廢棄物)의 재활용(再活用)

Waste Recycling Through Biological Route

  • ;
  • 김동진 (한국지질자원연구원 자원활용소재연구부) ;
  • 안종관 (한국지질자원연구원 자원활용소재연구부) ;
  • 박경호 (한국지질자원연구원 자원활용소재연구부) ;
  • 이승원 (충남대학교 나노공학부 나노소재공학과)
  • Pradhan, Debabrata (Minerals and Material Processing Division, Korea Institute of Geosciences and Mineral Resources (KIGAM)) ;
  • Kim, Dong-Jin (Minerals and Material Processing Division, Korea Institute of Geosciences and Mineral Resources (KIGAM)) ;
  • Ahn, Jong-Gwan (Minerals and Material Processing Division, Korea Institute of Geosciences and Mineral Resources (KIGAM)) ;
  • Park, Kyung-Ho (Minerals and Material Processing Division, Korea Institute of Geosciences and Mineral Resources (KIGAM)) ;
  • Lee, Seoung-Won (Division of Nano Engineering, School of Engineering, Chungnam National University)
  • 발행 : 2008.04.27

초록

다양한 독성 폐기물이 주변 환경에 배출되면 궁극적으로 모든 생명체의 생존에 위협이 된다. 박테리아 및 곰팡이종의 반응을 이용한 미생물침출 및 미생물복원을 포함하는 바이오 습식제련은 환경문제를 극복하는데 적합한 경제성이 있는 잠재기술이다. 미생물침출은 Thiobacillus ferrooxidans, Thiobacillus thiooxidans, Laptospirillum ferrooxidans와 같이 금속과 반응을 일으키는 박테리아를 이용하여 다양한 광물 및 폐기물로부터 금속 성분을 용해하는 것을 말한다. 일반적으로 미생물 침출반응은 직접 및 간접반응으로 나누어진다. 직접반응에서 박테리아는 성장 및 물질대사를 위하여 침출 기질로부터 전자를 받아 황산을 생산하므로써 황화광물을 산화시킨다. 반면 간접반응에서는 철산화 박테리아에 의해 생성된 $Fe^{3+}$가 황화광물을 산화시킨다. 이러한 침출기구를 통하여 저품위 광물 및 정광, 슬러지, 광미, 플라이 애쉬, 슬래그, 전자 스크랩, 폐밧데리 및 폐촉매 등으로부터 금속을 회수할 수 있다. 생물학적 방법은 폐기물의 매립을 극복할 수 있는 대체기술로서 건강하고 깨끗한 환경 보존에 기여할 수 있다.

Different toxic wastes are disposed of in our surroundings and these will ultimately threaten the existence of living organisms. Biohydrometallurgy, which includes the processes of bioleaching and bioremediation through the activities of microorganisms such as bacterial or fungal species, is a technology that has the potential to overcome many environmental problems at a reasonable economic cost. Bioleaching were carried out for dissolution of metals from different materials using most important metal mobilizing bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Laptospirillum ferrooxidans. According to the reaction, bioleaching is parted as direct and indirect mechanism. In direct mechanism the bacteria oxidize the sulphides minerals by accepting electron and producing sulphuric acid in leaching media for their growth and metabolism. In other hand the indirect bioleaching is demonstrated as the oxidation of sulphides mineral by the oxidant like $Fe^{3+}$ produced by the iron oxidizing bacteria. Through this process, substantial amount of metal can be recovered from low-grade ores, concentrates, industrial wastes like sludge, tailings, fly ash, slag, electronic scrap, spent batteries and spent catalysts. This may be alternative technology to solve the high deposition of waste, which moves toward a healthy environment and green world.

키워드

참고문헌

  1. J.W.C. Wong, L. Xiang, X.Y. Gu, and L.X. Zhou, 2004: Bioleaching of heavy metals from anaerobically digested sewage sludge using $FeS_2$ as an energy source. Chemosphere, 55, 101-107 https://doi.org/10.1016/j.chemosphere.2003.11.022
  2. S.Y. Chen, and J.G. Lin, 2004: Bioleaching of heavy metals from contaminated sediment by indigenous sulfuroxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration. Water Res. 38, 3205-3214 https://doi.org/10.1016/j.watres.2004.04.050
  3. N.W. Zhu, L.H. Zhang, C.J. Li, and C.G. Cai, 2003: Recycling of spent nickel-cadmium batteries based on bioleaching process. Waste Management, 23, 703-708 https://doi.org/10.1016/S0956-053X(03)00068-0
  4. T.J. Xu, and Y.P. Ting, 2004: Optimization on bioleaching of incinerator fly ash by Aspergillus niger - use of central composite design. Enzyme Microb. Technol. 35, 444-454 https://doi.org/10.1016/j.enzmictec.2004.07.003
  5. M. Paul, A. Sandstrom, and J. Paul, 2004: Prospects for cleaning ash in the acidic effluent from bioleaching of sulfidic concentrates. J. Hazard. Mater. 106B, 39-54
  6. S.Y. Shi, Z.H. Fang, J.R. Ni, 2006: Comparative study on the bioleaching of zinc sulphides. Process Biochemistry, 41, 438-446 https://doi.org/10.1016/j.procbio.2005.07.008
  7. H.L. Ehrlich, 1992: Metal extraction and ore discovery. In: Lederberg J, editor. Encyclopedia of microbiology, San Diego: Academic Press. 3, 75-80
  8. F. Schinner, and W. Burgstaller, 1989: Extraction of zinc from industrial waste by Penicillium sp. Appl. Environ. Microbiol. 55, 1153-1156
  9. M.R. Hoffmann, R.G. Arnold, and G. Stephanopoulos, 1989: US Patent 4880740
  10. R.F. Wilder, P.J. Barrett, L.W. Henslee, and D. Arpi, 1986: Recovery of metal Oxides from Fly Ash, EPRI CS-3544, Palo Alto, CA, USA, Vols. 1-3.
  11. A. Seidel, 1997: Mechanism of metals bioleaching from coal fly ash inconcentrated suspension by Thiobacillus thiooxidans bacteria. D.Sc.Thesis, The Technion, Haifa, Israel
  12. A.E. Torma, and K. Bosecker, 1982: Prog. Ind. Microbiol. 16, 77
  13. N.M. Catherine, K. Mahtab, F.G. Bernard, 2004: Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. J. Hazard. Mater. 110, 77-84 https://doi.org/10.1016/j.jhazmat.2004.02.040
  14. A. Seidel, Y. Zimmels, and R. Armon, 2001: Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans. Chem. Eng. J. 83, 123-130 https://doi.org/10.1016/S1385-8947(00)00256-4
  15. H. Seidel, C. Loser, A. Zehnsdorf, P. Hoffmann, and R. Schmerold, 2004: Bioremediation process for sediments contaminated by heavy metals: feasibility study on a pilot scale. Environ. Sci. Technol. 8, 1582-1588
  16. K. Bosecker, 1997: Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev. 20, 591-604 https://doi.org/10.1111/j.1574-6976.1997.tb00340.x
  17. W. Krebs, C. Brombacher, P.P. Bosshard, R. Bachofen, and H. Brandl, 1997: Microbial recovery of metals from solids. FEMS Microbiol Rev. 20, 605-617 https://doi.org/10.1111/j.1574-6976.1997.tb00341.x
  18. T. Gehrke, J. Telegdi, D. Thierry, and W. Sand, 1998: Importance of extracellular polymeric substances from Thiobacillus thiooxidans for bioleaching. Appl. Environ. Microbiol. 64, 2743-2747
  19. J.T. Staley, M.P. Bryant, N. Pfenning, and J.G. Holt (Eds.), 1989: Bergey's Manual of Systematic Bacteriology. Williams and Wilkins, USA. 3, 1857
  20. K. Sakamoto, M. Yagasaki, K. Kirimura, and S. Usami, 1989: Resistance acquisition of Thiobacillus thiooxidans upon cadmium and zinc ion addition and formation of cadmium ion-binding and zinc ion-binding proteins exhibiting metallothionein-like properties. J. Ferment. Bioeng. 67, 266-273 https://doi.org/10.1016/0922-338X(89)90230-4
  21. M.N. Collinet, and D. Morin, 1990: Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to arsenite arsenate ferrous and ferric iron. Antonie van Leeuwenhook. 57, 237-244 https://doi.org/10.1007/BF00400155
  22. G. Bryan, B. Christopher, K. Hallberg, and B. Johnson, 2006: Mobilization of metals in mineral tailings at the abandoned São Domingos copper mine (Portugal) by indigenous acidophilic bacteria. Hydrometallurgy. 83, 184-194 https://doi.org/10.1016/j.hydromet.2006.03.023
  23. P.R. Norris, N.P. Burton, and N.A.M. Foulis, 2000: Acidophiles in bioreactor mineral processing, Extremophiles. 4, 71-76 https://doi.org/10.1007/s007920050139
  24. J.A. Brierley, and C.L. Brierley, 2001: Present and future commercial applications of biohydrometallurgy, Hydrometallurgy. 59, 233-239 https://doi.org/10.1016/S0304-386X(00)00162-6
  25. B.M. Goebel, E. Stackebrandt, F.G. Priest, A. Ramos- Cormenzana, B.J. Tindall, 1994: Bacterial Diversity and Systematics. FEMS Symposium, Plenum Press, New York. 131-273
  26. C. Demargasso, P. Galleguillos, L. Escudero, V. Zepeda, D. Castillo, E.O. Casamayor, 2003: Proceedings of the Copper 2003, 5th International Conference, Santiago, Chile. 6 (book 1), 131-140
  27. S.Y. Shi, and Z.H. Fang, 2005: Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an air-lift reactor. Int. J. Miner. Process. 76, 3-12 https://doi.org/10.1016/j.minpro.2004.05.005
  28. M.P. Silverman, H.L. Ehrlich, 1964: Microbial formation and degradation of minerals.. In: Umbreit, Wayne W. (Ed.), Adv. Appl. Microbiol. 6, 153-206
  29. D.K. Ewart and M.N. Hughes, 1991: The extraction of metals from ores using bacteria, Adv. Inorg. Chem. 36, 103 https://doi.org/10.1016/S0898-8838(08)60038-0
  30. J. Barrett, M.N. Hughes, G.I. Karavaiko and P.A. Spencer, 1993: Metal extraction by Bacterial Oxidation of Minerals, Ellis Horwood, Chichester
  31. A.W. Breed, G.S. Hansford, 1999: Studies on the mechanism and kinetics of bioleaching, Minerals Engineering, 12 (4), 383-392 https://doi.org/10.1016/S0892-6875(99)00018-7
  32. A. Schippers, W. Sand, 1999: Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and Sulfur, Appl. And Environ. Micribiol., 65(1), 319-321
  33. E. Rawlings (Ed.), 1997: Biomining: Theory, Microbes and Industrial Processes,Heidelberg, R.G., Landes and Springer-Verlag, Austin
  34. H. Deveci, A. Akcil, and I. Alp, 2004: Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron. Hydrometallurgy. 73, 293-303 https://doi.org/10.1016/j.hydromet.2003.12.001
  35. M.X. Liao, and T.L. Deng, 2004: Zinc and lead extraction from complex raw sulfides by sequential bioleaching and acidic brine leach. Miner. Eng. 17, 17-22 https://doi.org/10.1016/j.mineng.2003.09.007
  36. M.Q. Qiu, S.Y. Xiong, W.M. Zhang, and G.X. Wang, 2005: A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Miner. Eng. 18, 987-990 https://doi.org/10.1016/j.mineng.2005.01.004
  37. S.M. Mousavi, S. Yaghmaei, M. Vossoughi, A. Jafari, R. Roostaazad, and I. Turunen, 2007: Bacterial leaching of low-grade ZnS concentrate using indigenous mesophilic and thermophilic strains. Hydrometallurgy. 85, 59-65 https://doi.org/10.1016/j.hydromet.2006.08.003
  38. O. Garcia Jr., J.M. Bigham, and O.H. Tuovinen, 1995: Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal of Microbiology. 41, 578-584 https://doi.org/10.1139/m95-077
  39. G.R. Chaudhury, and R.P. Das, 1987: Bacterial leaching complex sulfides of copper, lead and zinc. Int. J. Miner.Proces. 21, 57-64 https://doi.org/10.1016/0301-7516(87)90005-6
  40. S.S. Bang, S.S. Deshpande, and K.N. Han, 1995: The oxidation of galena using Thiobacillus ferrooxidans. Hydrometallurgy. 37, 181-192 https://doi.org/10.1016/0304-386X(94)00059-C
  41. F.K. Crundwell, 1988: The influence of the electronic structure of solid on the anodic dissolution and leaching of semiconductor sulphide minerals. Hydrometallurgy. 21, 155-190 https://doi.org/10.1016/0304-386X(88)90003-5
  42. F. Habashi, 1978: Chalcopyrite: Its Chemistry and Metallurgy. McGraw-Hill, New York
  43. A.J. Parker, R.L. Paul, and G.P. Power, 1981: Electrochemistry of the oxidative leaching of copper from chalcopyrite. J. Electroanal. Chem. 118, 305-316 https://doi.org/10.1016/S0022-0728(81)80549-9
  44. A. Ballester, F. Gonza'lez, M.L. Bla'zquez, and J.L. Mier, 1990: The influence of various ions in the bioleaching of metal sulfides. Hydrometallurgy. 23, 221-235 https://doi.org/10.1016/0304-386X(90)90006-N
  45. A. Ballester, F. Gonza'lez, M.L. Bla'zquez, C. Go'mez, and J.L. Mier, 1992: The use of catalytic ions in bioleaching. Hydrometallurgy. 29, 145-160 https://doi.org/10.1016/0304-386X(92)90010-W
  46. P.C. Banerjee, B.K. Chakrabarti, S. Bhattaacharyya, and A. Das, 1990: Silver-catalyzed hydro-metallurgical extraction of copper from sulfide ores from India mines. Hydrometallurgy. 25, 349-355 https://doi.org/10.1016/0304-386X(90)90049-8
  47. M.E. Escudero, F. Gonza'lez, M.L. Bla'zquez, A. Ballester, and C. Go'mez, 1993: The catalytic effect of some cations on the biological leaching of a Spanish complex sulphide. Hydrometallurgy. 34, 151-169 https://doi.org/10.1016/0304-386X(93)90032-9
  48. J.D. Miller, P.J. McDonough, and H.Q. Portillo, 1981: Electrochemistry in silver-catalyzed ferric sulfate leaching of chalcopyrite. In: Keaton, M.C. (Ed.), Process and Fundamental Consideration of Selected Hydrometallurgical Systems. SME-AIME, New York. 327-338
  49. P.R. Norris, 1990: Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Ehrlich, H.L., Brierley, C.L. (Eds.), Microbial Mineral Recovery. McGraw-Hill, New York
  50. D. Mishra, D.J. Kim, D.E. Ralph, J.G. Ahn, and Y.H. Rhee, 2007: Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans, Waste Management (Article in Press)
  51. R. Bosshard, 1998: Metallru¨ckgewinnung aus Elektronikschrott mit Hilfe von Bakterien. Diploma thesis, ETH Zurich, Switzerland
  52. H. Brandl, R. Bosshard, and M. Wegmann, 2001: Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy. 59, 319-326 https://doi.org/10.1016/S0304-386X(00)00188-2
  53. M.A. Faramarzi, M. Stagars, E. Pensini, W. Krebs, and H. Brandl, 2004: Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. Journal of Biotechnology. 113, 321-326 https://doi.org/10.1016/j.jbiotec.2004.03.031
  54. K. Inai, 1994: Rev. Inst. France Petrol. 49(5), 521
  55. G. Martino, 1994: Bull. Sot. Chim. Fr. 131, 444
  56. P. Joffe, G.T. Sperl, 1993: DOE rep., PC-92119-T4.
  57. K.A. Sanback, 1995: DOE Rep., PC/92119-T6
  58. K.A. Sanback, P.M. Joffe, 1993: DOE Rep., PC-92119-T2 and T3
  59. L. Briand, H. Thomas, A. de la Vega Alonso, E. Donati, 1999: Vanadium recovery from solid catalysts by means of Thiobacilli action. In: Amils, R., Ballester, A. (Eds.), Proceedings of the International Biohydrometallurgy Symposium (IBS), Part A. Elsevier, Amsterdam. 263-271
  60. D. Santhiya, and Y.P. Ting, 2005: Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. Journal of Biotechnology. 116, 171-184 https://doi.org/10.1016/j.jbiotec.2004.10.011
  61. D. Santhiya, and Y.P. Ting, 2006: Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst. Journal of Biotechnology. 121, 62-74 https://doi.org/10.1016/j.jbiotec.2005.07.002
  62. A.D. Zunkel, 1997: Electric arc furnace dust management: a review of technologies. Iron and Steel Engineer. March, 33-38
  63. M. Nemati, STL. Harrison, GS. Hansford, and C. Wess, 1988: Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review on the kinetic aspects. Biochem. Eng. J. 171-190
  64. C. Solisio, A. Lodi, and F. Veglio, 2002: Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans. Waste Management. 22, 667-675 https://doi.org/10.1016/S0956-053X(01)00052-6
  65. TT. Eighmy, Jr J.D. Eusden, JE. Krzanowski, DS. Domingo, D. Stampfli, and JR. Martin, 1995: Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash. Environ. Sci. Technol. 29, 629-646 https://doi.org/10.1021/es00003a010
  66. PP. Bosshard, R. Bachofen, and H. Brandl, 1996: Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ. Sci Technol. 30, 3066-3070 https://doi.org/10.1021/es960151v
  67. H.Y. Wu, 2002: Bioleaching of heavy metals from MSW incineration fly ash by Aspergillus niger. Master Thesis. National University of Singapore (NUS)
  68. Y.G. Liu, M. Zhou, G.M. Zeng, X. Li, W.H. Xu, and T. Fan, 2007: Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching. J. of Hazard. Mat. 141, 202-208 https://doi.org/10.1016/j.jhazmat.2006.06.113
  69. C. Loser, H. Seidel, P. Hoffmann, and A. Zehnsdorf, 2001: Remediation of heavy metal-contaminated sediments by solid-bed bioleaching. Environ. Geol. 40, 643-650 https://doi.org/10.1007/s002540000188
  70. J.F. Blais, R.D. Tyagi, and J.C. Auclair, 1992: Bioleaching of metals from sewage sludge by sulfur-oxidizing bacteria. J. Environ. Eng. 118, 690-707 https://doi.org/10.1061/(ASCE)0733-9372(1992)118:5(690)