DOI QR코드

DOI QR Code

Experimental Study of Friction Pendulum System to Improve the Seismic Capacity of Transformer

변압기의 내진성능 향상을 위한 마찰진자 면진장치의 시험 연구

  • Published : 2008.04.30

Abstract

Friction pendulum system is developed to prevent the damage of transformer, which is the most important among the electric power facilities, due to the earthquake and its seismic capacity is verified through the shaking table test. The applicability of friction pendulum system is confirmed as test results of compressive capacity test and friction test. Especially, as a result of shaking table test with a large scale transformer model, friction pendulum system gives to the reduction of maximum response acceleration by 30% at anchorage of transformer and 59% at the top of porcelain bushing comparing with the existing anchorage type. In addition to the reduction of maximum response acceleration, natural frequency of transformer is shifted to long period due to the friction pendulum system. In case that friction pendulum system is applied to the transformer, the damage of transformer can be prevented effectively under the earthquake.

본 연구에서는 전력설비 중 그 중요도가 가장 큰 변압기를 대상으로, 지진 발생 시 변압기의 파손을 방지하기 위하여 마찰진자 면진장치를 개발하고, 진동대시험을 통하여 그에 대한 내진성능을 입증하였다. 본 연구에서 개발한 마찰진자 면진장치에 대해 압축재하시험 및 마찰시험을 수행한 결과, 변압기의 면진장치로서 적용 가능한 것으로 나타났으며, 특히 변압기 축소모형을 대상으로 진동시험대에 의한 내진성능시험을 수행한 결과, 기존의 일반 고정기초형식보다 변압기 기초부의 최대 응답가속도는 약30%, 부싱 상단의 최대 응답가속도는 약 59% 감소하였다. 또한, 마찰진자 면진장치 설치 후, 변압기의 고유진동수가 약 82% 감소하며 장주기로 이동함을 확인할 수 있었다. 이와 같이 변압기에 마찰진자 면진장치를 적용하는 경우, 지진으로 인한 변압기의 파손을 효과적으로 방지할 수 있을 것으로 판단된다.

Keywords

References

  1. Murota, N., Feng, M. Q. and Liu, G. Y., "Experimental and Analytical Studies of Base Isolation Systems for Seismic Protection of Power Transformers", Technical Report MCEER-05-0008, MCEER, 2005. 9
  2. (사)일본전기협회, 변전소 등에 있어서 전기설비의 내진설계 지침, JEAG 5003, 1999
  3. Shinozuka, M., "The Hanshin-Awaji Earthquake of January 17:1995 Performance of Lifelines" Technical Report NCEER-95-0015, Buffalo, N.Y.: National Center for Earthquake Engineering Research, State University of New York, 1995
  4. Pansini, J. A., Electrical Transformers and Power Equipment, Prentice Hall, 1988
  5. 이찬욱,엄태건,김왕춘,장정범,합성마찰진자 면진장치 개발, 한국전력공사, 2008. 1
  6. Skinner, I. R., Robinson, H. W., and McVerry, H. G., An Introduction to Seismic Isolation, John Wiley & Sons Ltd, 1993
  7. Wilcoski, J., "Demonstration of CERL Equipment Fragility and Protection Procedure by Fragility Testing of a Power Transformer Bushing" ATC-29-1, Seminar Technical Papers, 1997
  8. Villaverde, R. and Pardoen, G., "9Ground Motion Amplification at Base of Bushings Mounted on Electric Substation Transformer" A Technical Report of Research Supported by PEER/PG&E Under Award No. PGE-09566, Department of Civil Engineering, University of California, Irvine, 1999
  9. Gilani, A. S., Chavez, J. W., Fenves, G. L. and Whittaker, A. S., Seismic Evaluation of 550kV Porcelain Transformer Bushings, PEER, 1999
  10. AASHTO, Guide Specifications for Seismic Isolation Design, 1999
  11. 한국전력공사, 송.변전설비 내진설계기준 설정 연구, 2001. 11
  12. Iizuka, M., Takaoka, E., Takenaka, Y., and Yoshikawa, K., "haking Table Tests of Base Isolation Systems Consisting of Rubber Bearings and Sliding Bearings" Proceedings of The 10th Earthquake Engineering Symposium, Yokohama, Japan, 1998

Cited by

  1. Base isolation performance of a cone-type friction pendulum bearing system vol.53, pp.2, 2015, https://doi.org/10.12989/sem.2015.53.2.227
  2. The Experimental Study on Seismic Capacity of 154 kV & 345 kV Main Transformer Bushings vol.22, pp.2, 2018, https://doi.org/10.5000/EESK.2018.22.2.087