등전위 교번식 직류전위차법의 신호 정밀도 검증을 통한 배관 감육 진단 기술에의 적용성 검증

Verification of the Viability of Equipotential Switching Direct Current Potential Drop Method for Piping Wall Loss Monitoring with Signal Sensitivity Analysis

  • 발행 : 2008.04.30

초록

유체가속부식에 의한 탄소강 배관의 감육은 원자력 발전소 저탄소강 배관의 주요 경년열화 현상으로서, 예상치 못한 배관의 파단을 야기해 발전소의 성능 및 안전을 저해할 수 있다. 최근, 등전위 교번식 직류 전위차법(ES-DCPD, equipotential switching direct current potential drop)을 이용한 배관 감육의 정밀 감시기법이 본 연구자들에 의하여 개발되었다. ES-DCPD 방법은 넓은 배관 영역을 빠르게 검사할 수 있는 방법으로, 넓은 영역의 직관부 감육을 빠르게 검사하는 광역감시법(WiRN, wide range monitoring)과 엘보우 등 곡관부의 감육이 활발한 컴포넌트의 국부적 감육을 비교적 넓은 범위에서 빠르게 스캔하는 협역감시법(NaRM, narrow range monitoring)으로 사용이 가능하다. 광역감시와 협역감시 기법은 초음파검사의 위치 선정파 초음파검사의 검사 누락부에 대한 신뢰성을 개선할 수 있을 것이다. 본 논문에서는 ES-DCPD를 바탕으로 한 새로운 감육 진단 기술을 실험실 환경에서 장기 검증 시험을 수행하여 신호 정밀도를 분석하였고, 결과의 현장 적용성을 논의하였다.

Flow accelerated corrosion (FAC) phenomenon of low alloy carbon steels in nuclear power plant has been known as one of major degradation mechanisms. It has a potential to cause nuclear pipe rupture accident which may directly impact on the plant reliability and safety. Recently, the equipotential switching direct current potential drop (ES-DCPD) method has been developed, by the present authors, as a method to monitor wall loss in a piping. This method can rapidly monitor the thinning of piping, utilizing either the wide range monitoring (WiRM) or the narrow range monitoring (NaRM) technique. WiRM is a method to monitor wide range of straight piping, whereas NaRM focuses significantly on a narrow range such as an elbow. WiRM and NaRM can improve the reliability of the current FAC screening method that is based on computer modeling on fluid flow conditions. In this paper, the measurements by ES-DCPD are performed with signal sensitivity analyses in the laboratory environment for extended period and showed the viability of ES-DCPD for real plant applications.

키워드

참고문헌

  1. J. Ducreux, 'Theoretical and experimental investigation of effect of chemical compo- sition of steel on their erosion-corrosion resistance,' Paper 19 presented to the Specialists Meeting on 'Corrosion-Erosion of Steels in High Temperature Water and Wet Steam,' (1982)
  2. A. Machiels, Recommendations for an Effective Flow-Accelerated Corrosion Program (NSAC-202L-R3), EPRI 1011838 Final Report, Electric Power Research Institute, (2006)
  3. Kyung Ha Ryu, Na Young Lee and Il Soon Hwang, 'A study on the equipotent switching direct current potential drop method for the monitoring of piping thinning,' Key Engineering Materials, Vols. pp. 345-346, (2007)
  4. Kyung Ha Ryu, Il Soon Hwang, Na Young Lee, Young Jin Oh, Jin Ho Park and Chang Ho Sohn, 'Screening method for pipe wall loss by flow accelerated corrosion,' Paper 89 presented on '13th International Conference on Environmental Degradation in Nuclear Power Systems,' (2007)
  5. American Society for Testing and Materials, Standard Test Method for Measurement of Fracture Toughness, ASTM Method E1820-01, Annual Book of ASTM Standards, Document Number E1820-01, (2003)
  6. H. H. Johnson, 'Calibrating the electric potential method for studying slow crack growth,' Materials Research and Standards, Vol. 5, No. 9. pp. 442-445, (1965)
  7. U. S. N. R. C. An Evaluation of J-R Curve Testing of Nuclear Piping Materials Using the Direct Current Potential Drop Technique, NUREG/CR-4540 Report, (1986)
  8. G. M. Wilkowski and J. O. Wambaugh, 'Single-specimen J-resistance curve evalua- tions using the direct current potential method and a computerized data acquisition system,' Fracture Mechanics: Fifteenth Symposium, ASTM STP 883, R. J. Sanford, American Society for Testing and Materials, pp. 553-576 (1984)
  9. Kyung Ha Ryu, Na Young Lee and Il Soon Hwang, 'Development of a piping thickness monitoring system using equipotential switching direct current potential drop method', Paper 7226 presented on 'International Congress on Advances in Nuclear Power Plants' (2007)
  10. Kyung Ha Ryu, Il Soon Hwang, Na Young Lee, Ji Hyun Kim, Jin Ho Park and Chang Ho Sohn, 'Online monitoring method using equipotential switching direct current potential drop for piping wall loss by flow accelerated corrosion', Paper presented on 'International Conference on Flow Accelerated Corrosion,' Vol. 1-3, pp. 132-144, (2008)
  11. Bindi Chexal, Jeffrey Horowitz, Robin Jones, Barry dooley, Chris Wood, Michel Bouchacourt, Francois Remy, Francis Nordmann and Pierre St. Paul, Flow- Accelerated Corrosion in Power Plants, EPRI 106611 Technical Report, Electric Power Research Institute, (1996)
  12. R. B. Doolwy, R. M. Tilley, V. K. Chexal, J. S. Horowitz and D. P. Munson, Guidelines for Controlling Flow-Accelerated Corrosion in Fossil Plants, EPRI 108895 Final Report, Electric Power Research Institute, (1997)
  13. A. Machiels, Guideline for Plant Modeling and Evaluation of Component Inspection Data, EPRI 1009599 Final Report, Electric Power Research Institute, (2004)
  14. Secondary Piping Rupture Accident at Mihama Power Station, Unit 3, of Kansai Electric Power Co. Inc. Final Report,' The Nuclear and Industrial Safety Agency, (2005)