Study on the Dependence of Ultrasonic Phase Velocity on Porosity, Frequency and Propagation Angle in Cancellous Bone

해면질골에서 다공율, 주파수 및 전파각에 대한 초음파 위상속도의 의존성 연구

  • Published : 2008.04.30

Abstract

In the present study, the dependence of ultrasonic phase velocity on porosity and frequency in cancellous bone was predicted using the Biot model and the modified Biot-Attenborough (MBA) model for propagation in fluid-saturated porous media. It was also compared with previously published measurements in human and bovine cancellous bones in vitro. It was shown that the phase velocity in cancellous bone decreased with increasing porosity and frequency The dependence of phase velocity on propagation angle in cancellous bone as predicted using the Schoenberg model together with the Biot model and tile MBA model which were modified to include the effect of angle. The theoretical models used in the present study advance our understanding of the interaction between ultrasound and cancellous bone and can be expected to be usefully employed for the diagnosis of osteoporosis.

본 논문에서는 유체에 포화된 다공성 매질에 적용되는 Biot 모델 및 modified Biot-Attenborough (MBA) 모델을 이용하여 해면질골에서 다공율 및 주파수에 대한 초음파 위상속도의 의존성을 예측하였다. 또한 선행 연구자들에 의하여 사람 및 소의 해면질골에서 측정된 값과 비교하였다. 해면질골에서 위상속도는 다공율 및 주파수가 증가함에 따라 감소하는 것을 알 수 있었다. 또한 전파각 효과를 포함하도록 수정된 Biot 모델 및 MBA 모델뿐만 아니라 Schoenberg 모델을 이용하여 해면질골에서 전파각에 대한 위상속도의 의존성을 예측하였다. 본 논문에서 이용된 이론적인 모델들은 초음파와 해면질골의 상호작용에 대한 물리학적인 이해를 증진시키는데 기여할 뿐만 아니라 골다공증을 진단하기 위하여 유용하게 이용될 수 있을 것으로 기대된다.

Keywords

References

  1. C. F. Njeh, D. Hans, T. Fuerst, C. C. Gluer, and H. K. Genant, Quantitative Ultrasound: Assessment of Osteoporosis and Bone Status, pp. 10-11, Martin Dunitz, London, UK, (1999)
  2. C. M. Langton, S. B. Palmer, and R. W. Porter, 'The measurement of broadband ultrasonic attenuation in cancellous bone,' Eng. Med., Vol. 13, pp. 89-91, (1984) https://doi.org/10.1243/EMED_JOUR_1984_013_022_02
  3. P. Laugier, 'An overview of bone sonometry,' International Congress Series, Vol. 1274, pp. 23-32, (2004) https://doi.org/10.1016/j.ics.2004.07.034
  4. K. I. Lee and S. W. Yoon, 'Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia,' J. Acoust. Soc. Am., Vol. 115, pp. 3210-3217, (2004) https://doi.org/10.1121/1.1707086
  5. J. L. Williams, 'Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot's theory,' J. Acoust. Soc. Am., Vol. 91, pp. 1106-1112, (1992) https://doi.org/10.1121/1.402637
  6. A. Hosokawa and T. Otani, 'Ultrasonic wave propagation in bovine cancellous bone,' J. Acoust. Soc. Am., Vol. 101, pp. 558-562, (1997) https://doi.org/10.1121/1.418118
  7. A. Hosokawa and T. Otani, 'Acoustic anisotropy in bovine cancellous bone,' J. Acoust. Soc. Am., Vol. 103, pp. 2718-2722, (1998) https://doi.org/10.1121/1.422790
  8. R. Strelitzki, P. H. F. Nicholson, and V. Paech, 'A model for ultrasonic scattering in cancellous bone based on velocity fluctuations in a binary mixture,' Physiol. Meas., Vol. 19, pp. 189-196, (1998) https://doi.org/10.1088/0967-3334/19/2/006
  9. E. R. Hughes, T. G. Leighton, G. W. Petley, and P. R. White, 'Ultrasonic propagation in cancellous bone: a new stratified model,' Ultrasound Med. Biol., Vol. 25, pp. 811-821, (1999) https://doi.org/10.1016/S0301-5629(99)00034-4
  10. K. I. Lee, H. S. Roh, and S. W. Yoon, 'Acoustic wave propagation in bovine cancellous bone: application of the modified Biot-Attenborough model,' J. Acoust. Soc. Am., Vol. 114, pp. 2284-2293, (2003) https://doi.org/10.1121/1.1610450
  11. K. I. Lee, E. R. Hughes, V. F. Humphrey, T. G. Leighton, and M. J. Choi, 'Empirical angle-dependent Biot and MBA Models for acoustic anisotropy in cancellous bone,' Phys. Med. Biol., Vol. 52, pp. 59-73, (2007) https://doi.org/10.1088/0031-9155/52/1/005
  12. M. Schoenberg, 'Wave propagation in alternating solid and fluid layers,' Wave Motion, Vol. 6, pp. 303-320, (1984) https://doi.org/10.1016/0165-2125(84)90033-7
  13. K. I. Lee, V. F. Humphrey, T. G. Leighton, and S. W. Yoon, 'Predictions of the modified Biot-Attenborough model for the dependence of phase velocity on porosity in cancellous bone,' Ultrasonics, Vol. 46, pp. 323-330, (2007) https://doi.org/10.1016/j.ultras.2007.01.012
  14. K. A. Wear, A. Laib, A. P. Stuber, and J. C. Reynolds, 'Comparison of measurements of phase velocity in human calcaneus to Biot theory,' J. Acoust. Soc. Am., Vol. 117, pp. 3319-3324, (2005) https://doi.org/10.1121/1.1886388
  15. K. A. Wear, 'The dependencies of phase velocity and dispersion on trabecular thickness and spacing in trabecular bone-mimicking phantoms,' J. Acoust. Soc. Am., Vol. 118, pp. 1186-1192, (2005) https://doi.org/10.1121/1.1940448
  16. R. Strelitzki, J. A. Evans, and A. J. Clarke, 'The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material,' Osteoporosis Int., Vol. 7, pp. 370-375, (1997) https://doi.org/10.1007/BF01623780
  17. W. Lin, Y. X. Qin, and C. Rubin, 'Ultrasonic wave propagation in trabecular bone predicted by the stratified model,' Ann. Biomed. Eng., Vol. 29, pp. 781-790, (2001) https://doi.org/10.1114/1.1397787
  18. K. A. Wear, 'A stratified model to predict dispersion in trabecular bone,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 48, pp. 1079-1083, (2001) https://doi.org/10.1109/58.935726
  19. K. R. Waters and B. K. Hoffmeister, 'Kramers-Kronig analysis of attenuation and dispersion in trabecular bone,' J. Acoust. Soc. Am., Vol. 118, pp. 3912-3920, (2005) https://doi.org/10.1121/1.2126934
  20. F. J. Fry and J. E. Barger, 'Acoustical properties of the human skull,' J. Acoust. Soc. Am., Vol. 63, pp. 1576-1589, (1978) https://doi.org/10.1121/1.381852
  21. S. Pal, S. Saha, and G. N. Reddy, 'Frequency dependence of ultrasonic characteristics of cancellous bone,' in Biomedical Engineering, Pergamon, London, UK, (1982)
  22. P. Droin, G. Berger, and P. Laugier, 'Velocity dispersion of acoustic waves in cancellous bone,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 45, pp. 581-592, (1998) https://doi.org/10.1109/58.677603