Real-Time Implementation of Medical Ultrasound Strain Imaging System

의료용 초음파 스트레인 영상 시스템의 실시간 구현

  • 정목근 (대진대학교 전자공학과, 통신공학과) ;
  • 권성재 (대진대학교 전자공학과, 통신공학과) ;
  • 배무호 (한림대학교 정보통신공학부)
  • Published : 2008.04.30

Abstract

Strain imaging in a medical ultrasound imaging system can differentiate the cancer or tumor in a lesion that is stiffer than the surrounding tissue. In this paper, a strain imaging technique using quasistatic compression is implemented that estimates the displacement between pre- and postcompression ultrasound echoes and obtains strain by differentiating it in the spatial direction. Displacements are computed from the phase difference of complex baseband signals obtained using their autocorrelation, and errors associated with converting the phase difference into time or distance are compensated for by taking into the center frequency variation. Also, to reduce the effect of operator's hand motion, the displacements of all scanlines are normalized with the result that satisfactory strain image quality has been obtained. These techniques have been incorporated into implementing a medical ultrasound strain imaging system that operates in real time.

의료용 초음파 영상 시스템에서 스트레인 영상 기법은 병변 주위의 조직보다 단단한 성질을 가지는 암이나 종양을 영상화할 수 있다. 준정적인 압축(quasistatic compression) 방법을 이용하여 스트레인 영상을 얻는 방법은, 조직에 변형을 가하기 전의 초음파 신호를 기준으로 하여 변형을 가한 후에 얻어진 초음파 신호 사이의 변위를 계산하고, 이를 공간 미분하여 스트레인을 구한다. 본 논문에서 변위의 계산은 복소 기저대역 신호의 자기상관(autocorrelation)을 계산하여 위상차로부터 구하고, 위상차를 시간 혹은 거리로 변환할 때 발생하는 오차를 중심주파수 편차를 보상하여 줄였다. 조작자의 손 움직임의 영향을 줄이기 위해 모든 스캔라인의 변위를 정규화시키는 알고리즘을 적용하여 균일한 스트레인 영상을 얻었다. 제안한 스트레인 영상 기법을 초음파 영상 진단기에서 실시간 동작하도록 구현하였다.

Keywords

References

  1. T. Sato, Y. Yamakoshi and T. Nakamura, 'Nonlinear tissue imaging,' Proc. IEEE Ultrason. Symp., pp. 889-892, (1986)
  2. D. Yanwu, T. Jie and S. Yongchen, 'Relations between the acoustic nonlinearity parameter and sound speed and tissue composition,' Proc. IEEE Ultrason. Symp., pp. 931-934, (1987)
  3. P. He and A. McGoron, 'Parameter estimation for nonlinear frequency dependent attenuation in soft tissue,' Ultrasound Med. Biol., Vol. 15, No. 8, pp. 757-763, (1989) https://doi.org/10.1016/0301-5629(89)90116-6
  4. Y. Hayakawa, T. Wagar, K. Yosioka, T. Inada, T. Suzuki, H. Yagami and T. Fujii, 'Measurement of ultrasound attenuation coefficient by a multifrequency echo technique-Theory and basic experiments,' IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 33, No. 6, pp. 759-764, (1986) https://doi.org/10.1109/T-UFFC.1986.26893
  5. K. Kim, W. F. Weitzel, J. M. Rubin, H. Xie, X. Chen and M. O'Donnell, 'Enhanced vascular strain imaging using arterial pressure equalization,' Proc. IEEE Ultrason. Symp., pp. 216-219, (2003)
  6. W. Khaled, C. Perrey, H. Ermert, W. Bojara and M. Lindstaedt, 'Strain imaging with intravascular ultrasound: An in vivo study,' Proc. IEEE Ultrason. Symp., pp. 1313-1316, (2006)
  7. http://folk.ntnu.no/stoylen/strainrate/
  8. L. S. Taylor, J. Tamez-Pena, J. S. Smith, D. Rubens and K. J. Parker, '3D sonoelastography for visualization of tumors,' Proc. IEEE Ultrason. Symp., pp. 1443-1446, (1997)
  9. K. Hoyt, K. J. Parker and D. J. Rubens, 'Sonoelastographic shear velocity imaging: Experiments on tissue phantom and prostate,' Proc. IEEE Ultrason. Symp., pp. 1686-1689, (2006)
  10. J. J. Dahl, R. R. Bouchard, M. L. Palmeri, V. Agrawal and G. E. Trahey, 'Parallel tracking and other methods for real-time ARFI imaging systems,' Proc. IEEE Ultrason. Symp., pp. 1005-1008, (2006)
  11. S. Catheline, J. Bercoff, J. L. Gennisson, C. Barrière and M. Fink, 'Nonlinearity studies in soft tissues with the supersonic shear imaging system,' Proc. IEEE Ultrason. Symp., pp. 1510-1512, (2004)
  12. M. Fatemi, L. E. Wold, A. Alizad and J. F. Greenleaf, 'Vibro-acoustic tissue mammog- raphy,' IEEE Trans. Med. Imaging, Vol. 21, No. 1, pp. 1-8, (2002) https://doi.org/10.1109/42.981229
  13. X. Zhang, M. Zeraati, R. R. Kinnick, J. F. Greenleaf and M. Fatemi, 'Vibration mode imaging,' IEEE Trans. Med. Imaging, Vol. 26, No. 6, pp. 843-852, (2007) https://doi.org/10.1109/TMI.2007.895463
  14. J. C. Bamber, P. E. Barbone, N. L. Bush, D. Cosgrove, M. D. Marvin, F. G. Fuechsel, P. M. Meaney, N. Miller, T. Shiina and F. Tranquari, 'Progress in freehand elastog- raphy of the breast,' IEICE Trans. Inf. Syst., Vol. E85-D, No. 1, pp. 5-14, (2002)
  15. M. Fink, L. Sandrin, M. Tanter, S. Catheline, S. Chaffai, J. Bercoff, and J.-L. Gennisson, 'Ultra high speed imaging of elasticity,' Proc. IEEE Ultrason. Symp., pp. 1811-1820, (2002)
  16. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi and X. Li, 'Elastography: A quantitative method for imaging the elasticity of biological tissues,' Ultrason. Imag., Vol. 13, pp. 111-134, (1991) https://doi.org/10.1016/0161-7346(91)90079-W
  17. R. Y. Yoon, S. J. Kwon, M. H. Bae and M. K. Jeong, 'Implementation of strain imaging modality in medical ultrasound imaging system,' J. IEEK, Vol. 42, No. 3, pp. 157-166, (2005)
  18. A. Pesavento, C. Perrey, M. Krueger and H. Ermert, 'A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation,' IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 46, No. 5, pp. 1057-1067, (1999) https://doi.org/10.1109/58.796111
  19. T. Shiina, N. Nitta, E. Ueno and J. C. Bamber, 'Real time tissue elasticity imaging using the combined autocorrelation method,' J. Med. Ultrason., Vol. 29, pp. 119-128, (2002) https://doi.org/10.1007/BF02481234
  20. M. Yamakawa and T. Shiina, 'Strain estimation using the extended combined autocorrelation method,' Jpn. J. Applied Physics, Vol. 40, No. 5B, pp. 3872-3876, (2001) https://doi.org/10.1143/JJAP.40.3872
  21. B. H. Friemel, L. N. Bohs and G. E. Trahey, 'Relative performance of two- dimensional speckle-tracking techniques: Normalized correlation,' Proc. IEEE Ultrason. Symp., pp. 1481-1484, (1995)
  22. R. Kuc, 'Generating a minimum phase digital filter model for the acoustic attenuation of soft tissue,' Proc. IEEE Ultrason. Symp., pp. 794-797, (1983)