반응압출법에 의해 화학적으로 개질된 PLA의 열적 특성, 유연학적 성질 및 생분해도

Thermal and Rheological Properties, and Biodegradability of Chemically Modified PLA by Reactive Extrusion

  • 장우열 (영남대학교 디스플레이 화학공학부) ;
  • 홍기헌 (김천대학 안경광학과) ;
  • 조백희 (김천대학 안경광학과) ;
  • 장상희 (구미1대학 영양학과) ;
  • 이상일 ((주)채널디엠) ;
  • 김봉식 (영남대학교 디스플레이 화학공학부) ;
  • 신부영 (영남대학교 디스플레이 화학공학부)
  • Jang, Woo-Yeul (School of Display and Chemical Engineering, Yeungnam University) ;
  • Hong, Ki-Heon (Department of Ophthalmic Optics, Gimcheon College) ;
  • Cho, Baek-Hee (Department of Ophthalmic Optics, Gimcheon College) ;
  • Jang, Sang-Hee (Department of Food and Nutrition Science, Gumi College) ;
  • Lee, Sang-Il (Channel DM Co., Ltd.) ;
  • Kim, Bong-Shik (School of Display and Chemical Engineering, Yeungnam University) ;
  • Shin, Boo-Young (School of Display and Chemical Engineering, Yeungnam University)
  • 발행 : 2008.03.31

초록

본 연구는 식물유래 생분해성 고분자인 poly(lactic acid)(PLA)의 가공성을 향상시키기 위하여 기능성 단량체인 glycidyl methacrylate(GMA)와 반응 개시제를 첨가하여 반응압출법으로 PLA를 개질한 후 겔화도, 열적성질, 유변학적 특성 및 생분해도를 조사하였다. 개질 PLA및 순수 PLA의 열적특성은 시차열량분석기(DSC)를 이용하여 측정하였고 유변학적 특성은 복합점도(${\eta}^*$), 저장 탄성률(G'), log G' vs. log G" 선도를 이용하여 분석 비교하였다. GMA가 포함되지 않고 개시제로만 개질된 PLA의 복합점도 및 저장탄성률도 순수 PLA보다 증가하였지만, 여기에 GMA를 첨가하여 개질하면 더욱 향상된 복합점도와 저장탄성률을 갖는 개질 PLA를 얻을 수 있었다. 개시제의 함량에 따라 최고 높은 복합점도 및 저장탄성률 증가 효과를 보이는 최적의 GMA함량이 존재하였다. 그리고 GMA가 함유된 개질 PLA의 생분해도는 약간 낮아지는 경향을 보였다.

A commercialized biobased and biodegradable poly(lactic acid)(PLA) containing the functional monomer of glycidyl methacrylate (GMA) was chemically modified using reactive extrusion to enhance its melt strength. Modified PLAs were prepared with various contents of GMA and initiator, and were characterized by observing their gel fraction, thermal properties, melt viscoelasticity and biodegradability. The complex viscosity and storage modulus of chemically modified PLA with the initiator alone was increased by addition of initiator and were more increased in the presence of GMA. There was a optimum content of GMA showing the maximum complex viscosity with the amount of initiator. The biodegradebility of modified PLA was slightly decreased by addition of GMA.

키워드

참고문헌

  1. R. Narayan, "Rationale, Drivers, and Technology Examples", in Biobased & Biodegradable Polymer Materials, K. C. Khemmani and C. Scholz, Editors, ACS, Washington DC (2006)
  2. S. B. David, J. D. Geyer, A. Gustafson, J. Snook, and R. Narayan, "Biodegradation and Composting Studies of Polymeric Materials", in Biodegradable Plastics and Polymers, Y. Doi and K. Fukuda, Editors, Elsevier, Osaka, p. 601 (1993)
  3. J. R. Lee, S. W. Chun, and H. J. Kang, Polymer(Korea), 27, 285 (2003)
  4. D. Carlson, P. Dubois, and R. Narayan, Polym. Eng. Sci., 38, 311 (1998) https://doi.org/10.1002/pen.10192
  5. S. S. Ray and M. Okamoto, Macromol. Rapid. Commun., 24, 815 (2003) https://doi.org/10.1002/marc.200300008
  6. Y. Di, S. Iannace, E. D. Maio, and L. Nicolais, J. Polym. Sci.; Part B: Polym. Phys., 43, 689 (2005) https://doi.org/10.1002/polb.20366
  7. Y. Di, S. Iannace, E. D. Maio, and L. Nicolai, Macromol. Mater. Eng., 290, 1083 (2005) https://doi.org/10.1002/mame.200500115
  8. E. S. Kim, B. C. Kim, and S. H. Kim, J. Polym. Sci.; Part B: Polym. Phys., 42, 939 (2004) https://doi.org/10.1002/polb.10685
  9. M. C. Gupta and V. G. Deshmukh, Polymer, 24, 827 (1983) https://doi.org/10.1016/0032-3861(83)90198-2
  10. B. Y. Shin, K. S. Kang, G. S. Jo, D. H. Han, J. S. Song, S. I. Lee, T. J. Lee, and B. K. Kim, Polymer(Korea), 31, 269 (2007)
  11. Y. K. Lee, J. M. Kim, J. D. Nam, C. S. Park, and S. P. Jang, Polymer(Korea), 24, 366 (2000)
  12. Y. K. Lee, J. M. Kim, M. Y. Lee, J. D. Nam, Y. H. Park, and C. S. Park, Polymer(Korea), 26, 139 (2002)
  13. B. H. Jeon, H. G. Yoon, S. S. Hwang, J. A. Kim, and S. M. Hong, Polymer(Korea), 29, 127 (2005)
  14. I. H. Cho, N. S. Kwak, P. H. Kang, Y. C. Nho, and T. S. Hwang, Polymer(Korea), 30, 217 (2006)
  15. K. S. Hwang, W. S. Ahn, S. H. Suh, and K. R. Ha, Polymer(Korea), 31, 68 (2007)
  16. K. H. Song, J. H. Hong, Y. T. Sung, Y. H. Kim, M. S. Han, H. G. Yoon, and W. N. Kim, Polymer(Korea), 31, 283 (2007)
  17. A. H. Hogt, J. Meijer, and J. Jelenic, "Modification of Poly-propylene by Organic Peroxides", in Reactive Modifiers for Polymers, S. Al-Malaik Editor, Blackie Academic and Professional, Chapman and Hall, London, p. 84 (1996)
  18. J. J. Meister, Polymer Modification: Principles, Techniques, and Applications, Marcell Dekker, Inc., New York, 2000
  19. D. J. Kim, H. J. Kang, and K. H. Seo, J. Appl. Polym. Sci., 81, 637 (2001) https://doi.org/10.1002/app.1479
  20. K. J. Kim, H. S. Ha, S. J. Kim, J. C. Lee, and B. K. Kim, Polymer(Korea), 17, 1 (1993)
  21. A. Sodergard, M. Niemi, J. F. Selin, and H. Nasman, Ind.. Eng. Chem. Res., 34, 1203 (1995) https://doi.org/10.1021/ie00043a024
  22. R. Auras, B. Harte, and S. Selke, Macromol. Biosci., 4, 835 (2004) https://doi.org/10.1002/mabi.200400043
  23. B. J. Jeong and M. Xantos, Polym. Eng. Sci., 47,244 (2007) https://doi.org/10.1002/pen.20699
  24. H. G. Chae, B. C. Kim, S. S. Im, and Y. K. Han, Polym. Eng. Sci., 41, 1133 (2001) https://doi.org/10.1002/pen.10814
  25. U. Yilmazer, M. Xanthos, G. Bayram, and V. Tan, J. Appl. Polym. Sci., 75, 1371 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000314)75:11<1371::AID-APP8>3.0.CO;2-5
  26. H. H. Yang, C. D Han, and J. K. Kim, Polymer, 35, 1503 (1994) https://doi.org/10.1016/0032-3861(94)90351-4
  27. C. D. Han and M. S. John, J. Appl. Polym. Sci., 32, 3809 (1986) https://doi.org/10.1002/app.1986.070320302
  28. H. Alata, B. Hexig, and Y. Inoue, J. Polym. Sci.; Part B: Polym. Phys., 44, 1813 (2006) https://doi.org/10.1002/polb.20846
  29. C. Jiao, Z. Wang, X. Liang, and Y. Hu, Polymer Testing, 24, 71 (2005) https://doi.org/10.1016/j.polymertesting.2004.07.007
  30. N. Kawamoto, A. Sakai, T. Horikoshi, T. Urushihara, and E. Tobita, J. Appl. Polym. Sci., 103, 198 (2007) https://doi.org/10.1002/app.25109
  31. S. Piccarolo, E. Vassileva, and Z. Kiflie, "Physical Cross Links in Amorphous PET, Influence of Cooling Rate and Ageing", in Polymer Crystallization, J.-U. Sommer and G. Reiter, Editors, Springer, New York, p. 325 (2003) https://doi.org/10.1007/3-540-45851-4_18
  32. D. L. Dotson and B.M. Burkhart, U.S.Patent 7,144,939 (2006)
  33. Q. Gui, Z. Xin, W. Zhu, and G. Dai, J. Appl. Polym. Sci., 88, 297 (2003) https://doi.org/10.1002/app.11708
  34. J. W. Park and S. S. Im, Polym. Eng. Sci., 40, 2539 (2000) https://doi.org/10.1002/pen.11384
  35. X. Wei, J. R. Collier, and S. Petrovan, J. Appl. Polym. Sci., 105, 309 (2007) https://doi.org/10.1002/app.25724
  36. R. T. Huang, The Practical Handbook of Compost Engineering, Lewis Publishers, Florida, 1993
  37. J. B. Snook, Biodegradability of Polylactide Film in Simulated Composting Environments, M. S. Thesis, Michigan State University, Michigan, 1994
  38. F. Yoshi, D. Darwis, H. Mitimo, and K. Makuuchi, Radiat. Phys. Chem., 57, 417 (2000) https://doi.org/10.1016/S0969-806X(99)00449-1