Polymide 6에서 Cyclic Diphosphonate Ester와 Melamine의 난연 효과

Flame Retardant Synergistic Performance between Cyclic Diphosphonate Ester and Melamine in Polyamide 6

  • Wang, Xueli (State Key Laboratory for Modification of Chemical Fiber & Polymeric Materials, College of Materials Science & Engineering, Donghua University) ;
  • Jiang, Jianming (State Key Laboratory for Modification of Chemical Fiber & Polymeric Materials, College of Materials Science & Engineering, Donghua University) ;
  • Yang, Shenglin (State Key Laboratory for Modification of Chemical Fiber & Polymeric Materials, College of Materials Science & Engineering, Donghua University) ;
  • Jin, Junhong (State Key Laboratory for Modification of Chemical Fiber & Polymeric Materials, College of Materials Science & Engineering, Donghua University) ;
  • Li, Guang (State Key Laboratory for Modification of Chemical Fiber & Polymeric Materials, College of Materials Science & Engineering, Donghua University)
  • 발행 : 2008.03.31

초록

A commercial cyclic diphosphonate ester (TPMP) and melamine (MA) was combined and added to polyamide 6 (PA6) to prepare the fire retardant PA6. An increase of the oxygen index to 28.6 as well as an improvement of the UL-94 classification to V-0 rating was observed. Cone measurements explained the rate of heat release (RHR) decreased and TGA showed the early decomposition and high solid residue due to co-addition of TPMP and MA, suggesting the occurrence of synergistic effect of TPMP and MA on fire resistance of PA6. The morphology of the char developed during combust ion showed the appearance of thick, intumescent cells on the surface of retardant PA6, which protects the underlying material from the action of the heat flux or flame and limits the diffusion of combustible volatile products towards the flame and oxygen.

키워드

참고문헌

  1. F. L. Fire, Combustability of Plastics-Flame Retardant and Flame Retarded Plastics, Van Nostrand Reinhold Publication, New York, 1991
  2. M. Zanetti, G. Camino, D. Canavese, A. B. Morgan, F. J. Lamelas, and C. A. Wilkie, Chem. Mater., 14, 189 (2002) https://doi.org/10.1021/cm011124t
  3. H. Wang, Z. Ling, Y. Zhuang, Z. Chen, and W. Fan, Macromol. Mater. Eng., 288, 272 (2003)
  4. S. V. Levchik, G. F. Levchik, and E. A. Murashko, et al., "Fire and Polymers, Materials and Solutions from Hazard Prevention", ACS Symposium Series, ACS, Washington, DC, Vol 797, p 214 (2001)
  5. A. I. Balabanovich, J. Anal. Appl. Pyrol., 72, 229 (2004) https://doi.org/10.1016/j.jaap.2004.07.001
  6. G. F. Levchik, Grigoriev Yu V., A. I. Balabanovich, S. V. Levchik, and M. Klatt, Polym. Int., 49, 1095 (2000) https://doi.org/10.1002/1097-0126(200010)49:10<1095::AID-PI405>3.0.CO;2-B
  7. Y. Tang, Y. Hu, S. Wang, Z. Gui, Z. Chen, and W. Fan, Polym. Int., 52, 1396 (2003) https://doi.org/10.1002/pi.1270
  8. L. Songa and Y. Hu, Polym. Degrad. Stabil., 86, 535 (2004) https://doi.org/10.1016/j.polymdegradstab.2004.06.007
  9. A. I. Balabanovich, G. F. Levchik, S. V. Levchik, and J. Engelmann, J. Fire Sci., 20, 71 (2002) https://doi.org/10.1177/0734904102020001201
  10. J. Jin, T. Lin, and J. Jiang, Journal of Donghua University(Chinese Edition), 32, 7 (2006)
  11. M. Herrera, M. Wilhelm, G. Matuschek, and A. Kettrup, J. Anal. Appl. Pyrol., 58, 173 (2001) https://doi.org/10.1016/S0165-2370(00)00193-5
  12. M. Nielsen, P. Jurasek, J. Hayashi, and E. Furimsky, J. Anal. Appl. Pyrol., 35, 43 (1995) https://doi.org/10.1016/0165-2370(95)00898-O
  13. S. V. Levchik, L. Costa, and G. Camino, Polym. Degrad. Stabil., 36, 229 (1992) https://doi.org/10.1016/0141-3910(92)90060-I
  14. H. Bockhorn, S. Donner, M. Gernsbeck, A. Hornung, and U. Hornung, J. Anal. Appl. Pyrol., 58, 79 (2001) https://doi.org/10.1016/S0165-2370(00)00187-X