The Peel Energy Behavior of UV-Cured Acrylic PSAs

UV경화형 아크릴계 점착제의 박리 에너지 변화

  • Son, Hee-Chul (Department of Polymer Science, Kyungpook National University) ;
  • Kim, Ho-Gyum (Department of Polymer Science, Kyungpook National University) ;
  • Lee, Dong-Ho (Department of Polymer Science, Kyungpook National University) ;
  • Min, Kyung-Eun (Department of Polymer Science, Kyungpook National University)
  • 손희철 (경북대학교 공과대학 고분자공학과) ;
  • 김호겸 (경북대학교 공과대학 고분자공학과) ;
  • 이동호 (경북대학교 공과대학 고분자공학과) ;
  • 민경은 (경북대학교 공과대학 고분자공학과)
  • Published : 2008.07.31

Abstract

Acrylic pressure sensitive adhesive(PSA) was prepared by UV radiation curing and the peel energy and physical properties of PSA were investigated. The increase of amount of acrylic acid leads to improve the peel energy, associated with the substrate having smooth surface and high layer thickness. The high peel energy is obtained when the direction of irregularity in substrate is horizontal with the peeling direction. This is attributed to the increase of resistance to peeling in spite of decrease of wetting and the result corresponds to our supposition.

UV개시에 의해 광경화형 아크릴 공중합체를 합성하고 제조된 아크릴 점착제(PSA)의 박리 에너지와 물리적 특성을 조사하였다. 이때 acrylic acid(AA)의 함량을 변화시켜 점착제의 물성을 변화시켰으며, 피착제의 표면 거칠기, 표면 요철방향, 점착제의 두께를 변화시킴으로써 박리 에너지의 변화 추이를 조사하였다. 공단량체인 acrylic acid의 함량이 증가함에 따라 표면 거칠기가 낮은 피착제가 높은 박리 에너지를 보였으며 점착제의 두께가 두꺼워 질수록 증가하였다. 또한 피착제 표면의 요철방향이 박리방향과 수평일 때 특히 높은 박리 에너지를 갖는 것으로 나타났다. 이것은 점착제의 두께 감소와 피착제 표면 거칠기의 증가가 wetting의 감소를 초래하지만 박리 시 저항력은 오히려 증가하는 경향을 나타내기 때문일 것이라는 예상과도 잘 일치한다.

Keywords

References

  1. D. Satas, Handbook of Pressure Sensitive Adhesive Technology, 2nd edition, Van Nostrand Reinhold, New York, 1989
  2. Istvan Benedek, Pressure-Sensitive Adhesives and Applications, 2nd edition, Marcel Dekker, New York, 2004
  3. A. Pizzi and K. L. Mittal, Adhesive Technology and Application, Marcel Dekker, New York, 2003
  4. A. J. Kinloch, Adhesion and Adhesives, Science and Technology, Lausanne, 1986
  5. Z. Czech, J. Appl. Polym. Sci., 81, 3212 (2001) https://doi.org/10.1002/app.1775
  6. Alphonsus V. Pocius, Adhesion and Adhesives Tech-nology, Carl Hanser Verlag, Munich, 2002
  7. J. H. Hong, UV Radiation Curing, Chosun University Press, 2002
  8. Polymer Science & Technology, 6, 545 (1995)
  9. Junko Asahara and Naruhito Hori, J. Appl. Polym. Sci., 87, 1493 (2003) https://doi.org/10.1002/app.11529
  10. Z. Czech, Int. J. Adhes. Adhes., 24, 503 (2004) https://doi.org/10.1016/j.ijadhadh.2004.01.005
  11. A. Aymonier and D. Leclercq, J. Appl. Polym. Sci., 89, 2749 (2003) https://doi.org/10.1002/app.12416
  12. P. Tordjeman and E. Papon, J. Appl. Polym. Sci., 38, 1201 (2000) https://doi.org/10.1002/(SICI)1099-0488(20000501)38:9<1201::AID-POLB12>3.0.CO;2-#
  13. A. Dupre, Theorie Mecanique de la Chaleur, Gauthier-Villars, Paris, p. 369 (1869)
  14. A. N. Gent and J. Schultz, Proc. 162nd ACS Meeting, 31, 113 (1971)
  15. A. N. Gent and J. Schultz, J. Adhes., 3, 281 (1972) https://doi.org/10.1080/00218467208072199
  16. D. E. Packham, Handbook of Adhesion, 2nd edition, John Wiley & Sons, Ltd, New York, 2005
  17. Y.-Y. Wang, C.-J. Li, and A. Ohmori, Thin Solid Films, 485, 141 (2005) https://doi.org/10.1016/j.tsf.2005.03.024
  18. M. Shahid and S. A. Hashim, Int. J. Adhes. Adhes., 22, 235 (2002) https://doi.org/10.1016/S0143-7496(01)00059-8
  19. A. F. Harris and A. Beevers, Int. J. Adhes. Adhes., 19, 445 (1999) https://doi.org/10.1016/S0143-7496(98)00061-X
  20. O. Ben-Zion and A. Nussinovitch, J. Adehsion Sci. Technol., 16, 599 (2002) https://doi.org/10.1163/156856102760070394
  21. A. Chiche et al., C. R. Acad. Sci. Paris, t. 1, Serie IV, p.1197 (2000)
  22. T. Sekercioglu et al., Journal of Materials Processing Technology, 142, 82 (2003) https://doi.org/10.1016/S0924-0136(03)00463-1
  23. J. P. Sargent, Int. J. Adhes. Adhes., 26, 151 (2006) https://doi.org/10.1016/j.ijadhadh.2005.01.009
  24. J. W. Kwon and D. G. Lee, J. Adhes. Sci. Technol., 14, 1085 (2000) https://doi.org/10.1163/156856100743095
  25. D. G. Lee, S. Kim, and I. Yong-Taek, J. Adhes., 35, 39 (1991) https://doi.org/10.1080/00218469108030434
  26. Posco Catalogue, Stainless, Pohang, 2001
  27. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969) https://doi.org/10.1002/app.1969.070130815
  28. F. M. Fowkes, Ind. Eng. Chem., 56, 40 (1964)
  29. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1740 (1969)
  30. D. H. Kaelble and K. C. Uy, J. Adhes., 2, 50 (1970) https://doi.org/10.1080/0021846708544579
  31. P. Tordjeman, E. Papon, and J-J. Villenave, J. Chem. Phys., 113, 10712 (2000) https://doi.org/10.1063/1.1323956
  32. N. Morel, Ph. Tordjeman, J. Duwattez, and E. Papon, Journal of Colloid and Interface Science, 280, 374 (2004) https://doi.org/10.1016/j.jcis.2004.08.010
  33. W. H. Yang, J. Appl. Polym. Sci., 55, 64 (1995)
  34. M. F. Tse, J. Adhes. Sci. Technol., 3, 551 (1989) https://doi.org/10.1163/156856189X00407