Responses of Alkoxyresorufin Dealkylases and Glutathione S-transferase Activities of Surf Clam, Pseudocardium sachalinensis, Injected with Sea-Nine 211 Antifoulant

Tin-free 방오제인 Sea-Nine 211을 주사한 북방대합에서 alkoxyresorufin 탈알킬화효소와 글루타치온 포합효소 활성의 변화

  • 이지선 (강릉대학교 해양생명공학부.동해안해양생물자원연구센터(EMBRC)) ;
  • 전영하 (강원도 환동해출장소) ;
  • 심원준 (한국해양연구원 남해연구소) ;
  • 전중균 (강릉대학교 해양생명공학부.동해안해양생물자원연구센터(EMBRC))
  • Published : 2008.05.31

Abstract

To evaluate the extent of Sea-Nine 211 (4,5-dichloro-2-n-octyl-3(2H) isothiazolone), one of the alternating organic booster compound used in antifouling paint to replace TBT, on marine benthic bivalve, we injected Sea-Nine 211 to clam, Pseudocardium sachalinensis, and then determined some xenobiotics metabolizing enzyme activities, especially EROD (ethoxyresorufin deethylase) and MROD (methoxyresorufin demethylase), in digestive gland during 4 day-exposure period. Moreover, the results were compared with those of TBT exposed clam. CYP1A1 dependant EROD activity in both the Sea-Nine 211 and the TBTC exposure groups showed no significant differences compared to those of the solvent control group. CYP1A2 dependant MROD activity in Sea-Nine 211 exposure group was significantly induced, but no significant difference was obtained in the TBTC exposure group. These results indicate that Sea-Nine 211 demonstrated a tendency to induce MROD activity, while TBTC inhibits the activities of this enzyme.

방오도료로 많이 쓰이던 유기주석화합물은 일반생물에게 미치는 독성이 매우 강하고 또한 내분비계 장애물질임이 밝혀지면서 이를 대체할 화합물들이 개발되고 있다. 그 가운데 본 연구에서는 Sea-Nine 211(4,5-dichlore-2-n-octyl-3(2H) isothiazolone)을 사용하여 이 화합물이 해양생물 특히 저서생물인 패류에게 얼마나 영향을 미치는지를 살펴보았다. 이를 위해 강원도 북부 해역에 주로 서식하는 북방대합(Pseudocardium sachalinensis)에게 Sea-Nine 211을 강제적으로 주사하여 alkoxyresorufin 탈알킬화효소인 EROD와 MROD의 활성 변화를 4일째까지 조사하였고, 비교를 위해서 tributyltin chloride (TBTC)도 사용하였다. 그 결과, CYP1A1의 지표효소인 EROD활성은 Sea-Nine 211 및 TBTC주사구 모두 sham구와 차이가 없었지만, CYP1A2의 지표효소인 MROD활성은 Sea-Nine 211 주사구가 sham구에 비해 유의적으로 높았으므로 Sea-Nine 211에 의해 유도된 것이라 여겨진다. 이것은 북방대합에도 CYP1A2가 존재할 수 있음을 보여준다.

Keywords

References

  1. 이지선, 전영하, 심원준, 전중균. 2008. Tin-free 방오제인 Sea- Nine 211에 노출된 북방대합에서 MFO 효소계의 반응. 환경생물. 26:102-108
  2. 전중균, 이미희, 김도진, 심원준, 오재룡, 이수형. 2002. 유기주 석화합물이 명주조개 (Coelomactra antiquata) 약물대사 효소계에 미치는 영향. 한국수산학회지. 35:185-190
  3. 전중균, 이미희, 이지선, 심원준, 이수형, 허형택. 2003. 유기주 석화합물이 해산 어류의 간장 MFO 효소계에 미치는 영향. 환경생물. 21:18-25
  4. Alzieu C. 1991. Environmental problems caused by TBT in France: Assessment, regulations, prospects. Mar. Environ. Res. 32:7-17 https://doi.org/10.1016/0141-1136(91)90029-8
  5. Burke MD and RT Mayer. 1974. Ethoxyresorufin: direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthrene. Drug Metab. Dispos. 2:583-588
  6. Callow ME and GL Willingham. 1996. Degradation of antifouling biocides. Biofouling 10:239-249 https://doi.org/10.1080/08927019609386283
  7. Davies IM, J Drinkwater and JC McKie. 1988. Effects of tributyltin compounds from antifoulants on Pacific oysters (Crassostrea gigas) in Scottish sea lochs. Aquaculture 74:319-330 https://doi.org/10.1016/0044-8486(88)90376-6
  8. Fent K and TD Bucheli. 1994. Inhibition of hepatic microsomal monooxygenase system by organotins in vitro in freshwater fish. Aquat. Toxicol. 28:107-126 https://doi.org/10.1016/0166-445X(94)90024-8
  9. Fent K and JJ Stegeman. 1991. Effects of tributyltin chloride in vitro on the hepatic microsomal monooxygenase system in the fish Stenotomus chrysops. Aquat. Toxicol. 20:159-168 https://doi.org/10.1016/0166-445X(91)90014-Z
  10. Fent K and JJ Stegeman. 1993a. Effects of tributyltin chloride in vitro on hepatic microsomal cytochrome P450 and associated enzyme activities in the marine fish Stenotomus chrysops. pp. 210-211. In 7th International Symposium on Responses of Marine Organisms to Pollutants (Stegeman JJ, MN Moore and ME Hahn eds.). Elsevier, Göteborg
  11. Fent K and JJ Stegeman. 1993b. Effects of tributyltin in vivo on hepatic cytochrome P450 forms in marine fish. Aquat. Toxicol. 24:219-240 https://doi.org/10.1016/0166-445X(93)90073-A
  12. Jacobson A, LS Mazza, LJ Lawrence, B Lawrence, S Jackson and K Kesterson. 1993. Fate of an antifoulant in an aquatic environment. pp. 127-138. In Pesticides in the Urban Environments, Fate and Significance. (Racke KD and AR Leslie eds.). American Chemical Society, Washington
  13. Jacobson A and GL Willingham. 2000. Sea-Nine antifoulant: an environmentally acceptable alternative to organotin antifoulants. The Science of The Total Environ. 258:103-110 https://doi.org/10.1016/S0048-9697(00)00511-8
  14. Kobayashi N. 1991. Marine pollution bioassay by using sea urchin eggs in the Tanabe Bay. Mar. Pollut. Bull. 23:709-713 https://doi.org/10.1016/0025-326X(91)90765-K
  15. Kobayashi N and H Okamura. 2002. Effects of new antifouling compounds on the development of sea urchin. Mar. Pollut. Bull. 44:748-751 https://doi.org/10.1016/S0025-326X(02)00052-8
  16. Lemaire P, A Matthews, L Forlin and DR Livingstone. 1994. Stimulation of oxyradical production of hepatic microsomes of flounder (Platichthys flesus) and perch (Perca fluviatilis) by model and pollutant xenobiotics. Arch. Environ. Contam. Toxicol. 26:191-200
  17. Lowry OH, NJ Roseborough, LA Farr and RJ Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275
  18. Marin MG, V Moschio, F Cima and C Celli. 2000. Embryotoxicity of butyltin compounds to the sea urchin Paracentrotus lividus. Mar. Environ. Res. 50:231-235 https://doi.org/10.1016/S0141-1136(00)00072-6
  19. Morcillo Y and C Porte. 1997. Interaction of tributyl- and triphenyltin with the microsomal monooxygenase system of molluscs and fish from the western Mediterranean. Aquat. Toxicol. 38:35-46 https://doi.org/10.1016/S0166-445X(96)00841-7
  20. Morcillo Y, MJJ Ronis, M Solé and C Porte. 1998. Effects of tributyltin on the cytochrome P450 monooxygenase system and sex steroid metabolism in the clam Ruditapes decussata. Mar. Environ. Res. 46:583-586 https://doi.org/10.1016/S0141-1136(97)00079-2
  21. Pesticides Safety Directorate. 1998. Antifouling Products. The Stationary Office, London
  22. Peters LD, C Nasci and DR Livingstone. 1998. Immunochemical investigations of cytochrome P450 forms/epitopes (CYP1A, 2B, 2E, 3A and 4A) in digestive gland of Mytilus sp. Comp. Biochem. Physiol. 121C:361-369
  23. Shade WD, SS Hurt, AH Jacobson and KH Reinert. 1993. Ecological risk assessment of a novel marine antifoulant. American Society for Testing and Materials (ASTM) Special Technical Publication (STP) 1216:381-407
  24. Sole M. 2000. Effects of tributyltin on the MFO system of the clam Ruditapes decussata: a laboratory and field approach. Comp. Biochem. Physiol. 125C:93-101
  25. WHO (World Health Organization). 1990. International Programme on Chemical Safety Environmental Health Criteria 116 Tributyltin Compounds, Geneva
  26. Willemsen PR, K Overbeke and A Suurmond. 1998. Repetitive testing of TBTO, Sea-Nine 211 and farnesol using Balanus amphitrite (Darwin) cypris larvae: Variability in larval sensitivity. Biofouling 12:133-147 https://doi.org/10.1080/08927019809378350
  27. Willingham GL and AH Jacobson. 1993. Efficacy and environmental fate of a new isothiazolone antifoulant. pp. 14.1- 14.13. In Proceedings of the 3rd Asia-Pacific Conference of the Paint Research Association, Singapore
  28. Willingham GL and AH Jacobson. 1996. Designing an environmentally safe marine antifoulant. pp. 224-233. In Designing Safer Chemicals (DeVito SC and RL Garrett eds.). American Chemical Society, Washington
  29. Wootton AN, C Herring, JA Spry, A Wiseman, DR Livingstone and PS Goldfarb. 1995. Evidence for the existence of cytochrome P450 gene families (CYP1A, 3A, 4A, 11A) and modulation of gene expression (CYP1A) in the mussel, Mytilus edulis sp. Mar. Environ. Res. 39:21-26 https://doi.org/10.1016/0141-1136(94)00077-3