Preparation of Branched Polystyrene Using Atom Transfer Radical Polymerization Techniques and Protection-Deprotection Chemistry

  • Kwark, Young-Je (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • Published : 2008.04.30

Abstract

A new strategy using protection-deprotection chemistry was used to prepare branched polymers using the ATRP method only. Among the several monomers with different protecting groups, vinyl benzyl t-butyloxy carbonate (VBt-BOC) and 4-methyl styrene (4-MeSt) could be polymerized successfully to form backbones using the ATRP method in a controlled fashion. The protected groups in the backbones were converted to alkyl bromides and used as initiating sites for branch formation. The benzyl t-butyloxy carbonate groups in the backbones containing VBt-BOC units were first deprotected to benzyl alcohol by trifluoroacetic acid, then converted to benzyl bromide by reacting them with triphenylphosphine/carbon tetrabromide. The benzyl bromide groups in the backbones containing 4-MeSt units could be generated by bromination of the methyl groups using N-bromosuccinimide/benzoyl peroxide. The structures of the prepared polymers were well-controlled, as evidenced by the controlled molecular weight as well as the narrow and unimodal molecular weight distribution.

Keywords

References

  1. O. Webster, Macromol. Symp., 98, 1361 (1995)
  2. O. Webster, Science, 251, 887 (1991) https://doi.org/10.1126/science.251.4996.887
  3. M. Szwarc, Nature, 176, 1168 (1956)
  4. K. Matyjaszewski and J. Xia, Chem. Rev., 101, 2921 (2001) https://doi.org/10.1021/cr940534g
  5. M. Kamigaito, T. Ando, and M. Sawamoto, Chem. Rev., 101, 3689 (2001) https://doi.org/10.1021/cr9901182
  6. Z. Xue, S. K. Noh, and W. S. Lyoo, Macromol. Res., 15, 302 (2007) https://doi.org/10.1007/BF03218791
  7. Y. W. Lee, S. M. Kang, and K. R. Yoon, Macromol. Res., 13, 356 (2005) https://doi.org/10.1007/BF03218466
  8. A. Hirao, Y. Tsunoda, and A. Matsuo, Macromol. Res., 14, 272 (2006) https://doi.org/10.1007/BF03219083
  9. T. Higashihara, K. Inoue, and M. Nagura, Macromol. Res., 14, 287 (2006) https://doi.org/10.1007/BF03219084
  10. K. Dayananda, M. S. Kim, and B. S. Kim, Macromol. Res., 15, 385 (2007) https://doi.org/10.1007/BF03218803
  11. R. B. Grubbs, C. J. Hawker, J. Dao, and J. M. J. FrZchet, Angew. Chem. Int. Ed. Engl., 36, 270 (1997) https://doi.org/10.1002/anie.199702701
  12. E. M. Doerffler and T. E. Patten, Macromolecules, 33, 8911 (2000) https://doi.org/10.1021/ma001281y
  13. J. R. Boyce, D. Shirvanyants, S. S. Sheiko, D. A. Ivanov, S. Qin, H. Bsrner, and K. Matyjaszewski, Langmuir, 20, 6005 (2004) https://doi.org/10.1021/la049852t
  14. K. Matyjaszewski, T. E. Patten, and J. Xia, J. Am. Chem. Soc., 119, 674 (1997) https://doi.org/10.1021/ja963361g
  15. C. Maerker, J. Am. Chem. Soc., 80, 2745 (1958) https://doi.org/10.1021/ja01544a042
  16. M. Bodanski, Y. Klaussner, and M. A. Ondetti, Peptide synthesis, 2nd Ed., Wiley-Interscience, New York, 1976
  17. L. A. Carpino, D. Collins, S. Gowecke, J. Mayo, S. D. Thatte, and F. Tibbets, Org. Synth. Coll., 5, 166 (1973)
  18. J. W. Scott, Org. Prep. Proceed. Int., 12, 242 (1980) https://doi.org/10.1080/00304948009458559
  19. L. A. Carpino, B. A. Carpino, C. A. Giza, R. W. Murray, A. A. Santilli, and P. H. Terry, Org. Synth., 44, 22 (1964)
  20. F. Houlihan, F. Bouchard, J. M. J. FrZtchet, and C. G. Willson, Can. J. Chem., 63, 153 (1985) https://doi.org/10.1139/v85-025
  21. M. A. Hartney, R. G. Tarascon, and A. E. November, J. Vac. Sci., Technol. (B), 3, 360 (1985) https://doi.org/10.1116/1.583264
  22. S. Mohanraj and W. T. Ford, Macromolecules, 19, 2470 (1986) https://doi.org/10.1021/ma00164a001
  23. R. G. Jones and Y. Matsubayashi, Polymer, 31, 1519 (1990) https://doi.org/10.1016/0032-3861(90)90160-Z
  24. T. C. Chung and H. L. Lu, U. S. Pat. 5,543,484 (1996)