Antimicrobial Drug Release Scaffolds of Natural and Synthetic Biodegradable Polymers

  • Prabu, Periasamy (Department of Bionanosystem Engineering, Chonbuk National University) ;
  • Kim, Kwan-Woo (Department of Bionanosystem Engineering, Chonbuk National University) ;
  • Dharmaraj, Nallusamy (Department of Chemistry, Bharathiar University) ;
  • Park, Jong-Hoon (Department of Textile Engineering, Chonbuk National University) ;
  • Khil, Myung-Seob (Department of Textile Engineering, Chonbuk National University) ;
  • Kim, Hak-Yong (Department of Textile Engineering, Chonbuk National University)
  • Published : 2008.06.30

Abstract

A series of biodegradable polymeric scaffolds was prepared by using a combination of natural (collagen) and synthetic (poly(caprolactone)) (PCL) polymers in various compositions. These scaffolds were soft, spongy, porous and transparent in nature and were characterized by thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. The entrapment efficiency and drug release activity of the scaffolds were analyzed using penicillin and tetracycline as antimicrobial drugs. The drug release activity of the scaffolds with various combinations of collagen and PCL were studied by measuring the optical density in a spectrophotometer at the following time intervals: 1,4, 24, 48 and 60 h. These scaffolds showed better and continuous drug release for up to 60 h. Even after such a long duration, a portion of the drug remained entrapped in the scaffolds, indicating that they can be utilized for wound healing applications.

Keywords

References

  1. W. Y. Chen and G. Abatangelo, Wound Repair Regen., 7, 79 (1999) https://doi.org/10.1046/j.1524-475X.1999.00079.x
  2. T. Miclau, M. L. Edin, F. E. Lester, R. W. Lindsey, and L. E. Daheners, J. Orthop. Tramuma., 9, 401 (1995) https://doi.org/10.1097/00005131-199505000-00007
  3. J. S. Lee, J. K. Kim, and S. R. Park, Macromol. Res., 15, 205 (2007) https://doi.org/10.1007/BF03218776
  4. C. G. Pitt, in Biodegradable Polymers as Drug Delivery Systems, M. Chasin and R. Langer, Eds., Marcel Dekker, New York, 1990, pp. 71-120
  5. H. S. Nam, J. An, and D. J. Chung, Macromol. Res., 14, 94 (2006) https://doi.org/10.1007/BF03219074
  6. M. W. Saltzman and S. P. Baldwin, Adv. Drug. Deliver. Rev., 33, 71 (1998) https://doi.org/10.1016/S0169-409X(98)00021-0
  7. J. Sohier, R. E. Haan, K. De Groot, and J. M. Bezemer, J. Control. Release, 87, 57 (2003) https://doi.org/10.1016/S0168-3659(02)00350-4
  8. M. A. Beonit, B. Baras, and J. Gillard, Int. J. Pharm., 184, 73 (1999) https://doi.org/10.1016/S0378-5173(99)00109-X
  9. M. Sivakumar and K. P. Rao, Biomaterials, 23, 3175 (2002) https://doi.org/10.1016/S0142-9612(02)00066-2
  10. V. S. Komlev, S. M. Barinov, and E. V. Koplik, Biomaterials, 23, 3449 (2002) https://doi.org/10.1016/S0142-9612(02)00049-2
  11. A. Krajewski, A. Ravaglioli, E. Roncari, P. Pinsco, and L. Montanari, J. Mater. Sci.: Mater. Med., 11, 763 (2000) https://doi.org/10.1023/A:1008988127294
  12. H. W. Kim, J. C. Knowles, and H. E. Kim, Biomaterials, 25, 1279 (2004) https://doi.org/10.1016/j.biomaterials.2003.07.003
  13. S. T. Boyce, A. P. Supp, G. D. Warden, and I. A. Holder, Antimicrob. Agents Chemother., 37, 1890 (1993) https://doi.org/10.1128/AAC.37.9.1890
  14. J. Grzybowski, W. Kolodziej, E. A.Trafny, and J. Struzyna, J. Biomed. Mater. Res., 36, 163 (1997) https://doi.org/10.1002/(SICI)1097-4636(199708)36:2<163::AID-JBM4>3.0.CO;2-I
  15. R. Sripriya, M. R. Ahmed, P. K. Sehgal, and R. Jayakumar, J. Appl. Polym. Sci., 87, 2186 (2003) https://doi.org/10.1002/app.11651
  16. S. Sakeil and J. Grzybowski, Polym. Med., 25, 19 (1995)