Preparation of Highly Cross-Linked, Monodisperse Poly(methyl methacrylate) Microspheres by Dispersion Polymerization; Part II. Semi-continuous Processes

  • Lee, Ki-Chang (Department of Polymer Sci. & Eng., Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Sang-Yun (Department of Polymer Sci. & Eng., Engineering Research Institute, Gyeongsang National University)
  • Published : 2008.06.30

Abstract

In our previous publication, the problem of particle deformation and coagulation at the nucleation stage in the presence of cross-linker was intensely studied by seeded batch dispersion polymerization of methyl methacrylate (MMA). In the present work, highly cross-linked, monodisperse PMMA particles were prepared under various reaction conditions by seeded semi-continuous process. Monodisperse, $6.5{\mu}m$-diameter PMMA particles containing up to 8 wt% of DVB or EGDMA were successfully made by seeded semi-continuous process and multi-semi-continuous addition process, respectively. Therefore, this study shows that seeded semi-continuous process is more effective and efficient to prepare highly cross-linked, monodisperse particles than non-seeded and seeded batch processes.

Keywords

References

  1. J. Uglestad, A. Berg, T. Ellingsen, R. Schmid, T. N. Nilsen, P. C. Mork, P. Stenstad, E. Horns, and O. Olsvik, Prog. Polym. Sci., 17, 87 (1992) https://doi.org/10.1016/0079-6700(92)90017-S
  2. E. D. Sudol, in Polymeric dispersions: principles and applications, J. M. Asua, Ed., Kluwer, Doedrecht, 1997, pp 375
  3. C. Pichot, T. Delair, and A. Elaissari, in Polymeric dispersions: principles and applications, J. M. Asua, Ed., Kluwer, Dordrecht, 1997, pp 515
  4. S. Arnold, C. T. Liu, and W. B. Whitten, Opt. Lett., 16, 420 (1991) https://doi.org/10.1364/OL.16.000420
  5. M. Hattori, E. D. Sudol, and M. S. El-asser, J. Appl. Polym. Sci., 50, 2027 (1993) https://doi.org/10.1002/app.1993.070501122
  6. B. Thomson, A. Rudin, and G. Lajoie, J. Polym. Sci.; Part A: Polym. Chem., 33, 345 (1995) https://doi.org/10.1002/pola.1995.080330301
  7. S. W. Hong, K. H. Kim, and J. Huh, Macromol. Res., 13, 397 (2005) https://doi.org/10.1007/BF03218472
  8. M. Mahkam, M. Assadi, and R. Mohammadzadeh, Macromol. Res., 14, 34 (2006) https://doi.org/10.1007/BF03219065
  9. J. Y. Kwon and H. D. Kim, Macromol. Res., 14, 373 (2006) https://doi.org/10.1007/BF03219097
  10. E. B. Branford and J. W. Vanderhoff, J. Appl. Phys., 26, 684 (1995)
  11. J. Ugelstad, K. H. Kaggerud, F. K. Hansen, and A. Berge, Makromol. Chem., 180, 737 (1979) https://doi.org/10.1002/macp.1979.021800317
  12. Y. Almog, S. Reich, and M. Levy, Br. Polym. J., 14, 131 (1982) https://doi.org/10.1002/pi.4980140402
  13. A. Tuncel, R. Kahraman, and E. Piskin, J. Appl. Polym. Sci., 50, 303 (1993) https://doi.org/10.1002/app.1993.070500212
  14. K. P. Lok and C. K. Ober, Can J. Chem., 63, 209 (1985) https://doi.org/10.1139/v85-033
  15. C. K. Ober and H. L. Hair, J. Polym. Sci.; Part A: Polym. Chem., 25, 1395 (1987) https://doi.org/10.1002/pola.1987.080250516
  16. C. K. Ober and K. P. Lok, Macromolecules, 20, 268 (1987) https://doi.org/10.1021/ma00168a007
  17. A. J. Paine, J. Polym. Sci., Polym. Chem. Ed., 28, 2485 (1990) https://doi.org/10.1002/pola.1990.080280921
  18. S. Shen, E. D. Sudal, and M. S. El-Aasser, J. Polym. Sci.; Polym. Chem. Ed., 31, 1393 (1993) https://doi.org/10.1002/pola.1993.080310606
  19. S. Shen, E. D. Sudol, and M. S. El-Aasser, J. Polym. Sci.; Part A: Polym. Chem., 32, 1087 (1994) https://doi.org/10.1002/pola.1994.080320611
  20. R. Hu, V. L. Dimonie, E. D. Sudal, and M. S. El-Aasser, J. Appl. Polym. Sci., 55, 1411 (1995) https://doi.org/10.1002/app.1995.070551006
  21. J. M. Saenz and J. M. Asua, J. Polym. Sci., Polym. Chem. Ed., 33, 1511 (1995) https://doi.org/10.1002/pola.1995.080330913
  22. D. Horak, F. Svec, and J. M. J. Frechet, J. Polym. Sci., Polym. Chem. Ed., 33, 2329 (1995) https://doi.org/10.1002/pola.1995.080331405
  23. C. M. Tseng, Y. Y. Lu, M. S. El-Aasser, and J. W. Vanderhoff, J. Polym. Sci., Polym. Chem. Ed., 24, 2985 (1986)
  24. W. H. Li and H. D. H. Stover, J. Polym Sci.; Part A: Polym. Chem., 36, 1543 (1998) https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R
  25. J. S. Song and M. A. Winnik, Macromolecules, 38, 8300 (2005) https://doi.org/10.1021/ma050992z
  26. H. T. Zhang, J. X. Huang, and B. B. Jiang, J. Appl. Polym. Sci., 85, 2230 (2002) https://doi.org/10.1002/app.10840
  27. J. Choi and S. Y. Kwak, J. Polym Sci.; Part A: Polym. Chem., 40, 4368 (2002) https://doi.org/10.1002/pola.10514
  28. K. C. Lee and S. Y. Lee, Macromol. Res., 15, 244 (2007) https://doi.org/10.1007/BF03218783
  29. J. W. Kim and K. D. Suh, Colloid Polym. Sci., 276, 870 (1998) https://doi.org/10.1007/s003960050323
  30. M. Okubo, J. Appl. Polym. Sci., 83, 2013 (2002) https://doi.org/10.1002/app.10158
  31. D. G. Yu and J. H. An, Macromolecules, 38, 7485 (2005) https://doi.org/10.1021/ma035613l