Synthesis of Aniline-Based Azopolymers for Surface Relief Grating

  • Jung, Woo-Hyuk (Department of Plastics Engineering, University of Massachusetts Lowell, 1 University Ave.) ;
  • Ha, Eun-Ju (Department of Polymer Science and Engineering, Pusan National University) ;
  • Chung, Il-Doo (Department of Polymer Science and Engineering, Pusan National University) ;
  • Lee, Jang-Oo (Department of Polymer Science and Engineering, Pusan National University)
  • Published : 2008.08.31

Abstract

Epoxy-based azopolymers were synthesized by the reaction of the diglycidyl ether of bisphenol A (DGEBA) or N,N-diglycidyl aniline (DGA) with disperse orange 3 (DO3) to give poly(DGEBA-co-DO3) or poly(DGA-co-DO3), respectively. Aniline-based azopolymers prepared from poly(DGA-co-An) precursors, synthesized by the reaction of DGA with aniline, were produced by the post-azo coupling reaction with diazonium salts containing various substituents. Holographic gratings were carried out to measure the diffractive efficiencies (DE) for the interference patterns of the $Ar^+$ laser from 50 to $300\;mW/cm^2$ intensity. The shorter repeating unit with higher chromophore density induced deeper surface relief gratings (SRG). Large surface gratings were observed for the aniline-based azopolymers with -COOH substituents, as compared with those for epoxy-based azopolymers. The aniline-based azopolymers with dimerized chromophores and various substituents were also synthesized to observe the effect of chromophore substituents and dimerization on the holography. The dimerized chromophores were more sensitively photoisomerized by the $Ar^+$ laser beam, and demonstrated a larger grating than that with one azo bond.

Keywords

References

  1. T. Todorov, L. Nikolova, and N. Tomova, Appl. Opt., 2, 4309 (1984)
  2. D. Y. Kim, L. Li, J. Kumar, and S. K. Tripathy, Appl. Phys. Lett., 66, 1166 (1995) https://doi.org/10.1063/1.113845
  3. D. Y. Kim, L. Li, X. L. Jiang, V. Shivshankar, J. Kumar, and S. K. Tripathy, Macromolecules, 28, 8835 (1995) https://doi.org/10.1021/ma00130a017
  4. J. Kumar, L. Li, X. L. Jiang, D. Y. Kim, T. S. Lee, and S. K. Tripathy, Appl. Phys. Lett., 72, 2096 (1998) https://doi.org/10.1063/1.121287
  5. D. H. Choi, D. Feng, H. Yoon, and S.-H. Choi, Macromol. Res., 11, 36 (2006)
  6. H. Chun, C. S. P. Sung, R. Sawin, M. Reily, S. Fernandez, D. H. Choi, and K.-S. Lim, Macromol. Res., 13, 463 (2005) https://doi.org/10.1007/BF03218482
  7. M. Itoh, K. Harada, H. Matsuda, S. Ohnishi, A. Parfenov, N. Tamaoki, and T. Yatagai, J. Phys. D: Appl. Phys., 31, 463 (1998) https://doi.org/10.1088/0022-3727/31/5/001
  8. H. Akiyama, M. Momose, K. Ichimura, and S. Yamamura, Macromolecules, 28, 288 (1995) https://doi.org/10.1021/ma00105a040
  9. I. Levesaque and M. Leclerc, Macromolecules, 30, 4347 (1997) https://doi.org/10.1021/ma961892j
  10. C. Roux and M. Leclerc, Macromolecules, 25, 2141 (1992) https://doi.org/10.1021/ma00034a012
  11. K. G. Chittibabu, Thiophene based polymeric materials for opto-electronics: design, synthesis and characterization, Ph.D. Dissertation, University of Massachusetts Lowell, 1996, p.30
  12. G. Daoust and M. Leclerc, Macromolecules, 24, 455 (1991) https://doi.org/10.1021/ma00002a018
  13. R. H. Berg, S. Hvilsted, and P. S. Ramanujam, Nature, 383, 505 (1996) https://doi.org/10.1038/383505a0
  14. X. Wang, L. Li, J.-I. Chen, S. Marturunkakul, J. Kumar, and S. K. Tripathy, Macromolecules, 30, 219 (1997) https://doi.org/10.1021/ma961010g
  15. X. L. Jiang, J. Kumar, D. Y. Kim, V. Shivshankar, and S. K. Tripathy, Appl. Phys. Lett., 68, 2618 (1996) https://doi.org/10.1063/1.116200
  16. M. Sukwattanasinitt, X. Wang, L. Li, X. Jiang, J. Kumar, S. K. Tripathy, and D. J. Sandman, Chem. Mater., 10, 27 (1998) https://doi.org/10.1021/cm970462k
  17. B. K Mandal, R. J. Jeng, J. Kumar, and S. K. Tripathy, Makromol. Chem., Rapid Commun., 12, 607 (1991) https://doi.org/10.1002/marc.1991.030121101
  18. S. Yang, Novel Photodynamic polymers: azobenzene-modified cellulose (azocellulose) and azobenzene-modified poly(Lglutamic acid) (AZOPLGA), Ph.D. Dissertation, University of Massachusetts Lowell, 2001, pp.37-38
  19. X. Wang, J.-I. Chen, S. Martunrunkakul, L. Li, J. Kumar, and S. K. Tripathy, Chem. Mater., 9, 45 (1997) https://doi.org/10.1021/cm950560a
  20. L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. Fetterman, Y. Shi, R. V. Mustacich, A. K.-Y. Jen, and K. J. Shea, Chem. Mater., 7, 1060 (1995) https://doi.org/10.1021/cm00054a006
  21. S. K. Yesodha, C. K. Sadashiva, S. Pillai, and N. Tsutsumi, Prog. Polym. Sci., 29, 45 (2004) https://doi.org/10.1016/j.progpolymsci.2003.07.002
  22. X. Meng, A. Natansohn, and P. Rochon, Polymer, 38, 2677 (1997) https://doi.org/10.1016/S0032-3861(97)85601-7