pH-Triggered Transition of Silk Fibroin from Spherical Micelles to Nanofibrils in Water

  • Chen, Peng (Department of Polymer Science and Engineering, Inha University) ;
  • Kim, Hyun-Suk (Department of Polymer Science and Engineering, Inha University) ;
  • Park, Chi-Young (Department of Polymer Science and Engineering, Inha University) ;
  • Kim, Hun-Sik (Department of Polymer Science and Engineering, Inha University) ;
  • Chin, In-Joo (Department of Polymer Science and Engineering, Inha University) ;
  • Jin, Hyoung-Joon (Department of Polymer Science and Engineering, Inha University)
  • Published : 2008.08.31

Abstract

Many natural proteins self-assemble in complex ways, either to fulfill their biological function or introduce particular properties, such as high strength and toughness. We report the morphological transition in water from a spherical to rod-like shape of Bombyx mori silk fibroin by reducing the pH. Transmission electron microscopy, scanning electron microscopy, and dynamic light scattering were used to characterize the dilute solutions of silk fibroin in an aqueous environment, and provide direct visualization of the transformation of spherical micelles at pH 6.8 to nanofibrils at pH 4.8. This change in morphology occurred as a result of the stretching entropy due to the formation of $\beta$-sheets, which was analyzed using circular dichroism spectroscopy. This study demonstrates the self-assembly of silk fibroin as a function of pH.

Keywords

References

  1. F. Vollrath and D. P. Knight, Nature, 410, 541 (2001) https://doi.org/10.1038/35069000
  2. K. H. Guhrs, K. Weisshart, and F. Grosse, Rev. Mol. Biotechnol., 74, 121 (2000) https://doi.org/10.1016/S1389-0352(00)00007-6
  3. Z. Hong, B. Chasan, R. Bansil, B. S. Turner, K. R. Bhaskar, and N. H. Afdhal, Biomacromolecules, 6, 3458 (2005) https://doi.org/10.1021/bm0505843
  4. E. Oroudjev, J. Soares, S. Arddlacono, J. B. Thompson, S. A. Fossey, and H. G. Hansma, Proc. Natl. Acad. Sci. USA, 99, 6460 (2002)
  5. S. Inoue, H. Tsuda, T. Tanaka, M. Kobayashi, Y. Magoshi, and J. Magoshi, Nano Lett., 3, 1329 (2003) https://doi.org/10.1021/nl0340327
  6. C.-Z. Zhou, F. Confalonieri, M. Jacquet, R. Perasso, Z.-G. Li, and J. Janin, Proteins: Struct., Funct., Genet., 44, 119 (2001) https://doi.org/10.1002/prot.1078
  7. H.-J. Jin and D. L. Kaplan, Nature, 424, 1057 (2003) https://doi.org/10.1038/nature01809
  8. C. Wong Po Foo, E. Bini, J. Hensman, D. P. Knight, R. V. Lewis, and D. L. Kaplan, Appl. Phys. A, 82, 223 (2006) https://doi.org/10.1007/s00339-005-3426-7
  9. P. J. Willcox, P. S. Gido, W. Muller, and D. L. Kaplan, Macromolecules, 29, 5106 (1996) https://doi.org/10.1021/ma960588n
  10. J. Magoshi, Y. Magoshi, M. A. Becker, and S. Nakamura, ACS National Meeting, 212, 53 (1996)
  11. B. Chu, Laser Light Scattering: Basic Principles and Practice, 2nd Edition, Academic Press, 1992
  12. Y. Song, C. Park, and C. Kim, Macromol. Res., 14, 235 (2006) https://doi.org/10.1007/BF03218515
  13. U.-J. Kim, J. Park, C. Li, H.-J. Jin, R. Valluzzi, and D. L. Kaplan, Biomacromolecules, 5, 786 (2004) https://doi.org/10.1021/bm0345460
  14. R. Masui, T. Mikawa, and S. Kuramitsu, J. Biol. Chem., 272, 27707 (1997) https://doi.org/10.1074/jbc.272.44.27707
  15. C. Park, M. Rhue, J. Lim, and C. Kim, Macromol. Res., 15, 39 (2007) https://doi.org/10.1007/BF03218750
  16. J. D. Hartgerink, E. Benlash, and S. I. Stupp, Proc. Natl. Acad. Sci. USA, 99, 5133 (2002)
  17. G. D. Kang, J. H. Nahm, J. S. Park, J. Y. Moon, C. S. Cho, and J. H. Yeo, Macromol. Rapid Commun., 21, 788 (2000) https://doi.org/10.1002/1521-3927(20000701)21:11<788::AID-MARC788>3.0.CO;2-X
  18. K. Tanaka, N. Kajiyama, K. Ishikura, S. Waga, A. Kikuchi, K. Ohtomo, T. Takagi, and S. Misuno, Biochem. Biophys. Acta, 92, 1432 (1999)
  19. K. Yamaguchi, Y. Kikuchi, T. Takagi, A. KiKuchi, F. Oyama, K. Shimura, and S. Mizuno, J. Mol. Biol., 210, 127 (1989) https://doi.org/10.1016/0022-2836(89)90295-7
  20. X. Chen, D. P. Knight, and F. Vollrath, Biomacromolecules, 3, 644 (2002) https://doi.org/10.1021/bm0156126
  21. F. N. Braun and C. Viney, Int. J. Bio. Macromol., 32, 59 (2003) https://doi.org/10.1016/S0141-8130(03)00038-2
  22. L. Lei, J.-F. Gohy, N. Willet, J.-X. Zhang, S. Varshney, and R. Jerome, Macromolecules, 37, 1089 (2004) https://doi.org/10.1021/ma034255j
  23. H. Yamada, H. Nakao, Y. Takasu, and K. Tsubouchi, Mater. Sci. Eng. C, 14, 41 (2001) https://doi.org/10.1016/S0928-4931(01)00207-7
  24. Y. Yang, Z. Shao, X. Chen, and P. Zhou, Biomacromolecules, 5, 773 (2004) https://doi.org/10.1021/bm0343848