DOI QR코드

DOI QR Code

Optimization of Proteolytic Enzyme Treatment for the Production of Spirulina Extract

단백질 분해 효소를 이용한 스피루리나 추출물 제조 공정 최적화

  • Published : 2008.04.30

Abstract

An efficient production method of spirulina extract was developed by enzymatic treatment using proteolytic enzymes. The suitable dosage of Tunicase, a cell lytic enzyme, was used to be 2.0% (w/w). To maximize solid recovery and spirulina extraction (SE) index, which indicates nucleic acid-related substances content, the dosage of Alcalase, commercially available pretense, was found to be 1.0% (w/w). By simultaneous treatments using optimal dosages of Tunicase and Alcalase, the highest SE index and solid recovery were obtained. The SE index and solid recovery of simultaneous treatments were notably enhanced by 100% ($11.4%\;{\rightarrow}\;22.8%$) and 56% ($45.2%\;{\rightarrow}\;70.7%$), respectively, than those of the non-treated extracts.

세포벽 분해 효소와 단백질 분해 효소를 이용하여 스피루리나 추출물을 효율적으로 생산할 수 있는 방법을 조사하였다. 특히 단백질 분해 효소의 처리 조건을 최적화하여 효율적인 스피루리나 추출물의 제조공정을 제시하였다. 세포벽 분해 효소인 Tunicase는 스피루리나의 중량 기준으로 2%를 사용하였고 2시간 동안 반응시켰다. 상업용 단백질 분해 효소로는 Alcalase를 사용하였다. 이때, Alcalase의 최적 사용량은 1%이었으며, 효소 반응 시간은 2시간이 적절하였다. Tunicase와 Alcalase의 처리 방법에서 Tunicase를 먼저 사용한 후 Alcalase를 사용하는 순차적으로 처리하는 것이 고형분 회수율과 spirulina extraction (SE) index를 최대로 증가시킬 수 있는 효과적인 방법이었다. 두 효소를 순차적으로 반응시키면 단순 열수 추출보다 고형분 회수율은 약 56%($45.2%\;{\rightarrow}\;70.7%$), SE index는 약 100%($11.4%\;{\rightarrow}\;22.8%$) 증가하였다.

Keywords

References

  1. O. Ciferri, "Spirulina, the edible microorganisms," Microbiol. Rev., Vol. 47, pp. 551-578, 1983.
  2. R. A. Kay, "Microalgae as food and supplement," Crit. Rev. Food Sci. Nutr., Vol. 30, pp. 555-573, 1991. https://doi.org/10.1080/10408399109527556
  3. V. V. Annapurna, Y. G. Deosthale, and M. S. Bamji, "Spirulina as a source of vitamin A," Plant Foods Hum. Nutr., Vol. 41, pp. 125-134, 1991. https://doi.org/10.1007/BF02194081
  4. O. Tokuşoglu and M. K. Unal, "Biomass nutrition profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana," J. Food Sci., Vol. 68, pp. 1144-1148, 2003. https://doi.org/10.1111/j.1365-2621.2003.tb09615.x
  5. W. Y. Kim and J. Y. Park, "The effect of spirulina on lipid metabolism, antioxidant capacity and immune function in Korean elderlies," Korean J. Nutr., Vol. 36, pp. 287-297, 2003.
  6. N. Nakaya, Y. Homma, and Y. Goto, "Chloresterol lowering effect of spirulina," Nutr. Rep. Int., Vol. 37, pp. 1329-1337, 1988.
  7. O. Hayashi, T. Hirahashi, T. Katoh, H. Miyajima, T. Hirano, and Y. Okuwaki, "Class specific influence of dietary Spirulina platensis on antibody production in mice," J. Nutr. Sci. Vitaminol., Vol. 44, pp. 841-851, 1998. https://doi.org/10.3177/jnsv.44.841
  8. M. K. Sharma, A. Sharma, A. Kumar, and M. Kumar, "Evaluation of protective efficacy of Spirulina fusiformis against mercury induced nephrotoxicity in Swiss albino mice," Food Chem. Toxicol., Vol. 45, pp. 879-887, 2007. https://doi.org/10.1016/j.fct.2006.11.009
  9. A. Hernández-Corona, I. Nieves, M. Meckes, G. Chamorro, and B. L. Barron, "Antiviral activity of Spirulina maxima against herpes simplex virus type 2," Antiviral Res., Vol. 56, pp. 279-285, 2002. https://doi.org/10.1016/S0166-3542(02)00132-8
  10. T. Hirahashi, M. Matsumoto, K. Hazeki, Y. Saeki, M. Ui, and T. Seya, "Activation of the human innate immune system by spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis," Int. Immunopharmacol., Vol. 2, pp. 423-434, 2002. https://doi.org/10.1016/S1567-5769(01)00166-7
  11. L. -C. Wu, J. -A. Annine Ho, M. -C. Shief, and I.-W. Lu, "Antioxidant and antiproliferative activities of spirulina and chlorella water extract," J. Agric. Food Chem., Vol. 53, pp. 4207-4212, 2005. https://doi.org/10.1021/jf0479517
  12. G. Ozdemir, N. U. Karabay, M. C. Dalay, and B. Pazarbasi, "Antibacterial activity of volatile component and various extracts of Spirulina platensis," Phytother. Res., Vol. 18, pp. 754-757, 2004. https://doi.org/10.1002/ptr.1541
  13. H. -S. Kim, C. -H. Kim, J. -H. Kim, M. -C. Kwon, J. -H. Cho, H. -G. Gwak, B. -Y. Hwang, J. -C. Kim, and H. Y. Lee, "Comparison of anticancer activities from the culture and extraction conditions of the Spirulina platensis," Kor. J. Microbiol. Biotechnol., Vol. 34, pp. 143-149, 2006.
  14. L. Wang, B. Pan, J. Sheng, J. Xu, and Q. Hu, "Antioxidant activity of Spirulina platensis extracts by supercritical carbon dioxide extraction," Food Chem., Vol. 105, pp. 36-41, 2007. https://doi.org/10.1016/j.foodchem.2007.03.054
  15. M. -J. In, S. Y. Gwon, H. J. Chae, D. C. Kim, and D. H. Kim, "Production of spirulina extract by enzymatic hydrolysis," J. Korean Soc. Appl. Biol. Chem., Vol. 50. pp. 304-307, 2007.
  16. M. -J. In, J. E. Jang, and D. H. Kim, "Enhancing extraction yield of chlorella extract by enzyme treatment," J. Appl. Biol. Chem., Vol. 50, pp. 132-135, 2007.
  17. H. J. Chae, H. Joo, and M. -J. In, "Utilization of brewer's yeast cells for the production of food-grade yeast extract. Part 1: effects of different enzymatic treatments on solid and protein recovery and flavor characteristics," Bioresource Technol., Vol. 76, pp. 253-258, 2001. https://doi.org/10.1016/S0960-8524(00)00102-4
  18. M. -J. In, H. J. Chae, and N. -S. Oh, "Process development for heme-enriched peptide by enzymatic hydrolysis of hemoglobin," Bioresource Technol., Vol. 84, pp. 63-68, 2002. https://doi.org/10.1016/S0960-8524(02)00009-3
  19. H. J. Chae, M. -J. In, and M. H. Kim, "Optimization of enzymatic treatment for the production of hydrolyzed vegetable protein," Korean J. Food Sci. Technol., Vol. 29, pp. 1125-1130, 1997.