References
- Sutherland J. 2003. Modelling food spoilage. In Food Preservation Techniques. Zeuthen P, Bogh-Sorensen L, eds. Woodhead Publishing, Cambridge, UK. p 451-474
- Schaffner DW, Labuza TP. 1997. Predictive microbiology: where are we, and where are we going? Food Technol 51: 95-99
- McMeekin TA, Olley J, Ratkowsky DA, Ross T. 2002. Predictive microbiology: towards the interface and beyond. Int J Food Microbiol 73: 395-407 https://doi.org/10.1016/S0168-1605(01)00663-8
- Baranyi J, Robinson TP, Kaloti A, Mackey BM. 1995. Predicting growth of Brochothrix thermosphacta at changing temperature. Int J Food Microbiol 27: 61-75 https://doi.org/10.1016/0168-1605(94)00154-X
- Bovill R, Bew J, Cook N, D'Agostino M, Wilkinson N, Baranyi J. 2000. Predictions of growth for Listeria monocytogenes and Salmonella during fluctuating temperature. Int J Food Microbiol 59: 157-165 https://doi.org/10.1016/S0168-1605(00)00292-0
- Huang L. 2003. Estimation of growth of Clostridium perfringens in cooked beef under fluctuating temperature conditions. Food Microbiol 20: 549-559 https://doi.org/10.1016/S0740-0020(02)00155-7
- Koseki S, Isobe S. 2005. Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table. Int J Food Microbiol 104: 239-248 https://doi.org/10.1016/j.ijfoodmicro.2005.02.012
- Van Impe JF, Nicolai BM, Schellekens M, Martens T, Baerdemaeker JD. 1995. Predictive microbiology in a dynamic environment: a system theory approach. Int J Food Microbiol 25: 227-249 https://doi.org/10.1016/0168-1605(94)00140-2
- Taoukis PS, Koutsoumanis K, Nychas GJE. 1999. Use of time temperature integrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions. Int J Food Microbiol 53: 21-31 https://doi.org/10.1016/S0168-1605(99)00142-7
- Corradini MG, Peleg M. 2005. Estimating non-isothermal bacterial growth in foods from isothermal experimental data. J Appl Microbiol 99: 187-200 https://doi.org/10.1111/j.1365-2672.2005.02570.x
- Lee DS, Hwang KJ, An DS, Park JP, Lee HJ. 2007. Model on the microbial quality change of seasoned soybean sprouts for on-line shelf life prediction. Int J Food Microbiol 18: 285-293 https://doi.org/10.1016/j.ijfoodmicro.2007.07.052
- Nauta MJ. 2007. Uncertainty and variability in predictive models of microorganisms in food. In Modelling Microorganisms in Food. Brul S, Van Gerwen S, Zwietering M, eds. Woodhead Publishing, Cambridge, UK. p 44-66
- Moreau Y, Couvert O, Thuault D. 2005. Estimation of the confidence band of bacterial growth simulation. The Sym'Previus approach. Acta Horti 674: 415-420
- Poschet F, Geeraerd AH, Scheerlinck N, Nicolai BM, Van Impe JF. 2003. Monte Carlo analysis as a tool to incorporate variation on experimental data in predictive microbiology. Food Microbiol 20: 285-295 https://doi.org/10.1016/S0740-0020(02)00156-9
- Schaffner DW. 1994. Application of a statistical bootstrapping technique to calculate growth rate variance for modelling psychrotrophic pathogen growth. Int J Food Microbiol 24: 309-314 https://doi.org/10.1016/0168-1605(94)90128-7
- Poschet F, Bernaerts K, Geeraerd AH, Scheerlinck N, Nicolai BM, Van Impe JF. 2004. Sensitivity analysis of microbial growth parameter distributions with respect to data quality and quantity by using Monte Carlo analysis. Math Comput Simulat 65: 231-243 https://doi.org/10.1016/j.matcom.2003.12.002
- Koutsoumanis K. 2001. Predictive modeling of the shelf life of fish under nonisothermal conditions. Appl Environ Microbiol 67: 1821-1829 https://doi.org/10.1128/AEM.67.4.1821-1829.2001
- Almonacid-Merino SF, Thomas DR, Torres JA. 1993. Numerical and statistical methodology to analyze microbial spoilage of refrigerated solid foods exposed to temperature abuse. J Food Sci 58: 914-920 https://doi.org/10.1111/j.1365-2621.1993.tb09390.x
- Baranyi J, Roberts TA. 1994. A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23: 277-294 https://doi.org/10.1016/0168-1605(94)90157-0
- Davison AC, Hinkley DV. 1997. Bootstrap Methods and Their Application. Cambridge University Press, Cambridge, UK. p 261-266
- Motulsky H, Christopoulos A. 2004. Fitting Models to Biological Data Using Linear and Nonlinear Regression. Oxford University Press, New York. p 29-137
- Ratkowsky DA. 2004. Model fitting and uncertainty. In Modeling Microbial Responses in Food. McKellar RC, Lu X, eds. CRC Press, Boca Raton, FL, USA. p 151-196
- Swinnen IAM, Bernaerts K, Dens EJJ, Geeraerd AH, Van Im-pe JF. 2004. Predictive modelling of the microbial lag phase: a review. Int J Food Microbiol 94: 137-159 https://doi.org/10.1016/j.ijfoodmicro.2004.01.006
- Baranyi J, Roberts TA. 1995. Mathematics of predicted food microbiology. Int J Food Microbiol 26: 199-218 https://doi.org/10.1016/0168-1605(94)00121-L
Cited by
- Monitoring and modelling of headspace-gas concentration changes for shelf life control of a glass packaged perishable food vol.55, pp.2, 2014, https://doi.org/10.1016/j.lwt.2013.10.018
- Modelling of mould/yeast growth on Korean braised lotus root cuts as a primary quality index in storage vol.20, pp.3, 2009, https://doi.org/10.1111/j.1748-0159.2009.00136.x
- Microbial Quality Change Model of Korean Pan-Fried Meat Patties Exposed to Fluctuating Temperature Conditions vol.13, pp.4, 2008, https://doi.org/10.3746/jfn.2008.13.4.348