DOI QR코드

DOI QR Code

Growth and Effect of Thermal Annealing for ZnIn2S4 Single Crystal Thin Film by Hot Wall Epitaxy

Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 열처리 효과

  • Published : 2008.06.30

Abstract

Single crystal $ZnIn_2S_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T^2/(T+489\;K)$. After the as-grown $ZnIn_2S_4$ single crystal thin films were annealed in Zn-, S-, and In-atmospheres, the origin of point defects of $ZnIn_2S_4$ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $ZnIn_2S_4$ single crystal thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2S_4$/GaAs did not form the native defects because In in $ZnIn_2S_4$ single crystal thin films existed in the form of stable bonds.

Keywords

References

  1. R. K. Ahrenkiel and T. R. Massopust, Appl. Phys. Lett., 43, 658 (1983) https://doi.org/10.1063/1.94474
  2. S. Wagner, J. L. Shay, and P. Migliorat, Appl. Phys. Lett., 25, 434 (1974) https://doi.org/10.1063/1.1655537
  3. P. Migliorato, and J. L. Shay, J. Appl. Phys., 146, 1777 (1975) https://doi.org/10.1063/1.321782
  4. F. G. Donika, S. I. emiletov, T. V. Donika, I. G. Mustya, Sov. Physic. Crystallogr. 15, 695 (1971)
  5. D. Haneman and J. Szot, Appl. Phys. Lett., 46, 778 (1985) https://doi.org/10.1063/1.95907
  6. V. Riede, H. Neumann and X. Nguyen, Appl. Phys. Lett., 28, 449 (1978)
  7. I. Shih, C. H. Champness, and A. V. Shahihi, J. Solar cells, 16, (1984)
  8. D. cahen, P. J. Ireland, L. L. Kazmerski, and F. A. Thiel, J. Appl. Phys., 57, 4761 (1985) https://doi.org/10.1063/1.335341
  9. K. J. Hong, and T. S. Jeong, J. Cryst. Growth, 218, 19 (2000) https://doi.org/10.1016/S0022-0248(00)00491-7
  10. W. Horig, and H. Sobotta, Thin Solid Films, 48, 67(1978) https://doi.org/10.1016/0040-6090(78)90332-2
  11. K. J. Hong, and T. S. Jeong, J. Cryst. Growth, 172, 89 (1997) https://doi.org/10.1016/S0022-0248(96)00725-7
  12. B. D. Cullity, Elements of X-ray Diffractions, Caddson- Wesley, chap 11, (1985)
  13. J. M. Ballingall, M. L. Wroge, D. J. Leopold, Appl. Phys. Lett., 48, 1273 (1986) https://doi.org/10.1063/1.97001
  14. R. Korenstein, B. MaCleod, J. Cryst. Growth, 86, 382 (1988) https://doi.org/10.1016/0022-0248(90)90747-9
  15. H. Fujita, J. Phys. Soc., Jpn., 20, 109 (1965) https://doi.org/10.1143/JPSJ.20.109
  16. V. P. Varshni, Physica, 34, 149 (1967) https://doi.org/10.1016/0031-8914(67)90062-6
  17. Segall, B. and Marple, D. T. F., in : M. Aven and J. S. Prenerin (Eds), Physics and Chemistry of II-VI Compounds, North-Holland, Amsterdam, 340 (1967)
  18. Shay, J. L. and Tell, J. H., Ternary chalcopyrite semiconductor : electronic properties, and applications, pergamon, chap. 4 (1975)