DOI QR코드

DOI QR Code

Mechanical Properties and Creep Behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe Alloy Cladding Tubes

Zr-Sn-Fe-Cr 및 Zr-Nb-Sn-Fe 합금 피복관의 기계적 특성 및 Creep 거동

  • Lee, Sang-Yong (Department of Materials Engineering Chungbuk National University) ;
  • Ko, San (Department of Nano-materials Engineering, Chungnam National University) ;
  • Choi, Young-Chul (Department of Nano-materials Engineering, Chungnam National University) ;
  • Kim, Kyu-Tae (Korea Atomic Energy Research Institute) ;
  • Choi, Jae-Ha (Department of Materials Engineering Chungbuk National University) ;
  • Hong, Sun-Ig (Department of Nano-materials Engineering, Chungnam National University)
  • 이상용 (충북대학교 재료공학과) ;
  • 고산 (충남대학교 나노소재공학과) ;
  • 최영철 (충남대학교 나노소재공학과) ;
  • 김규태 (한전원자력연료(주)) ;
  • 최재하 (충북대학교 재료공학과) ;
  • 홍순익 (충남대학교 나노소재공학과)
  • Published : 2008.06.30

Abstract

Since the 1990s, the second generation of Zirconium alloys containing main alloy compositions of Nb, Sn and Fe have been used as a replacement of Zircaloy-4 (Zr-Sn-Fe-Cr), a first-generation Zirconium alloy, to meet severe and rigorous reactor operating conditions characterized by high-burn-up, high-power and high-pH operations. In this study, the mechanical properties and creep behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe alloys were investigated in a temperature range of $450{\sim}500^{\circ}C$ and in a stress range of $80{\sim}150\;MPa$. The mechanical testing results indicate that the yield and tensile strengths of the Zr-Nb-Sn-Fe alloy are slightly higher compared to those of Zr-Sn-Fe-Cr. This can be explained by the second phase strengthening of the $\beta$-Nb precipitates. The creep test results indicate that the stress exponent for the steady-state creep rate decreases with the increase in the applied stress. However, the stress exponent of the Zr-Sn-Fe-Cr alloy is lower than that of the Zr-Nb-Sn-Fe alloy in a relatively high stress range, whereas the creep activation energy of the former is slightly higher than that of the latter. This can be explained by the dynamic deformation aging effect caused by the interaction of dislocations with Sn substitutional atoms. A higher Sn content leads to a lower stress exponent value and higher creep activation energy.

Keywords

References

  1. E. Kohn, Zirconium in the Nuclear Industry, ASTM STP 633, 402 (1977)
  2. K. W. Lee, S. K. Kim, K. T. Kim, S. I. Hong, J. Nucl. Mater., 295, 21 (2001) https://doi.org/10.1016/S0022-3115(01)00509-8
  3. O. S. Ivanov and U. K. Grigorovitch, Second International Conference on Peaceful Uses of Atomic energy, Genova, 5, 34 (1958)
  4. W. A. Mcinteer, David L. Baty and K. O. Stein, Zirconium in the Nuclear Industry, ASTM STP, 1023, 621 (1989)
  5. B. Cox and C. E. Lundin, Proceedings of the USAEC Syposium on Zirconium Alloy Development, p.9 Castlaewood, Pleasanton, Califonia, (1962)
  6. D. G. Franklin, G. E. Lucas, A. L. Bement, Creep of Zirconium Alloy in Nuclear Reactors, p.183, ASTM, (1993)
  7. K. Linga Murty, J. Ravi, Wiratmo, Nuclear Enginerring and Design., 156, 359 (1995) https://doi.org/10.1016/0029-5493(94)00960-7
  8. J. Weertman, Trans, AIME, 218, 207 (1960)
  9. J. D. Lubahn, R. P. Felgar, Plasticity and Creep of Metals, p.210, wiley, (1961)
  10. K. L. Murty, G. S. Clevinger, T. P. Papazogloa, Trans, of the 4th Int. Conf. on Structural Mechanics in Reactor Technology, p.C3/4, Vol C, SF, CA, (1977)
  11. S. I. Hong: Mater. Sci. Eng., 86, 211 (1987) https://doi.org/10.1016/0025-5416(87)90454-X
  12. S. I. Hong: Mater. Sci. Eng., 64, L19 (1984) https://doi.org/10.1016/0025-5416(84)90112-5
  13. S. I. Hong: Mater. Sci. Eng., 91, 137 (1987) https://doi.org/10.1016/0025-5416(87)90291-6
  14. S. I. Hong: Mater. Sci. Eng., 82, 175 (1986) https://doi.org/10.1016/0025-5416(86)90105-9
  15. S. I. Hong: Mater. Sci. Eng., 79, 1 (1986) https://doi.org/10.1016/0025-5416(86)90380-0
  16. H. Oikawa, K. Honda and S. Ito, Mater. Sci. Eng., 64, 237 (1984) https://doi.org/10.1016/0025-5416(84)90107-1
  17. Y. Zhoy, B. Devarajan, K. L. Murty, Nuclear Enginerring and Design., 228, 3 (2004) https://doi.org/10.1016/j.nucengdes.2003.06.013
  18. J. Y. Park, H. G. Kim, Y. H. Jeong, Y. H. Jung, J. Nucl. Mater., 335, 433 (2004) https://doi.org/10.1016/j.jnucmat.2004.07.051
  19. G. P Sabol, G. R. Kilp, M. G. Balfour and E. Roberts, Zirconium in the Nuclear Industry, ASTM STP, 1023, 227 (1989)
  20. D. O. Northwood, X, Meng and B. O. Warr, ASTM STP, 1132, 156 (1991)