Abstract
This paper describes a 3.3V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method with monotonicity, glitch energy. The output stage utilizes here implements a return-to-zero circuit to obtain the dynamic performance. Most of D/A converters in decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. the designed D/A converter using the CMOS n-well $0.35{\mu}m$ process0. The experimental data shows that the rise/fall time, settling time, and INL/DNL are 1.90ns/2.0ns, 12.79ns, and a less than ${\pm}2.5/{\pm}0.7\;LSB$, respectively. The power dissipation of the D/A converter with a single power supply of 3.3V is about 250mW.
본 논문은 상위 7-비트와 하위3-비트의 binary-thermal decoding 방식과 segmented 전류원 구조로서 전력소모, 선형성 및 글리치 에너지 등 주요 사양을 고려하여, 3.3V 10비트 CMOS D/A 변환기를 제안한다. 동적 성능을 향상 시키기위해 출력단에 return-to-zero 회로를 사용하였고, segmented 전류원 구조와 최적화 된 binary-thermal decoding 방식으로 D/A 변환기가 가질 수 있는 장점은 디코딩 논리 회로의 복잡성을 단순화함으로 칩면적을 줄일 수 있다. 제안된 변환기는 $0.35{\mu}m$ CMOS n-well 표준공정을 이용한다. 설계된 회로의 상승/하강시간, 정착시간, 및 INL/DNL은 각각 1.90/2.0ns, 12.79ns, ${\pm}2.5/{\pm}0.7\;LSB$로 나타난다. 또한 설계된 D/A 변환기는 3.3V의 공급전원에서는 250mW의 전력소모가 측정된다.