DOI QR코드

DOI QR Code

THE FABRICATION OF A PROCESS HEAT EXCHANGER FOR A SO3 DECOMPOSER USING SURFACE-MODIFIED HASTELLOY X MATERIALS

  • Published : 2008.04.30

Abstract

This study investigates the surface modification of a Hastelloy X plate and diffusion bonding in the assembly of surface modified plates. These types of plates are involved in the key processes in the fabrication of a process heat exchanger (PHE) for a $SO_3$ decomposer. Strong adhesion of a SiC film deposited onto Hastelloy X can be achieved by a thin SiC film deposition and a subsequent N ion beam bombardment followed by an additional deposition of a thicker film that prevents the Hastelloy X surface from becoming exposed to a corrosive environment through the pores. This process not only produces higher corrosion resistance as proved by electrolytic etching but also exhibits higher endurance against thermal stress above 9$900^{\circ}C$. A process for a good bonding between Hastelloy X sheets, which is essential for a good heat exchanger, was developed by diffusion bonding. The diffusion bonding was done by mechanically clamping the sheets under a heat treatment at $900^{\circ}C$. When the clamping jig consisted of materials with a thermal expansion coefficient that was equal to or less than that of the Hastelloy X, sound bonding was achieved.

Keywords

References

  1. Jonghwa Chang*, Yong-Wan Kim, Ki-Young Lee, Young- Woo Lee, Won Jae Lee, Jae-Man Noh, Min-Hwan Kim, Hong-Sik Lim, Young-Joon Shin, Ki-Kwang Bae and Kwang-Deog Jung, Nuclear Engineering and Technology, 39 NO.2, 111-122 (2007) https://doi.org/10.5516/NET.2007.39.2.111
  2. C. Sella, J. Lecoeur, Y. Sampeur, P. Catania, Surf. Coat. Technol. 60, 577 (1993) https://doi.org/10.1016/0257-8972(93)90156-I
  3. H. Ota, S. Kubo, M. Hodotsuka, T. Inatomi, M. Kobayashi, A. Terada, S. Kasahara, R. Hino, K. Ogura, S. Maruyama, Proceedings of the 13th International Conference on Nuclear Engineering, Beijing, China, May 16?20, 2005, 332, Icone-13-50494
  4. J.-P. Riviere, J. Delafond, P. Misaelides, F. Noli, Surf. Coat. Technol. 100-101, 243 (1998) https://doi.org/10.1016/S0257-8972(97)00622-1
  5. S. Fujikawa, H. Hatashi, T. Nakazawa, K. Kawasaki, T. Iyoku, S. Nakagawa and N. Sakaba., J. Nucl. Sci. Technol., 41, 1245 (2004) https://doi.org/10.3327/jnst.41.1245
  6. R. Nakatani, R. Taniguchi, Y. Chimi, N. Ishikawa, M. Fukuzumi, Y. Kato, H. Tsuchida, N. Matsunami, A. Iwase, Nucl. Inst. Meth. B 230, 234 (2005) https://doi.org/10.1016/j.nimb.2004.12.047
  7. Wolfgang Bolse, Mat. Sci. Eng. A, 253, 194 (1998) https://doi.org/10.1016/S0921-5093(98)00727-8
  8. K. Zhang, K. P. Lieb, V. Milinovic, M. Uhrmacher, S. Klaumuenzer, Nucl. Inst. Meth. B. , 249, 167 (2006) https://doi.org/10.1016/j.nimb.2006.03.106
  9. H. Uchida, M. Yamashita, S. Hanaki, T. Ueta, Mat. Sci. Eng. A 387, 758 (2004) https://doi.org/10.1016/j.msea.2004.03.096
  10. J. F. Ziegler, J. P. Biersack, U. Littmark, 'The Stopping Range of Ion in Solids', Pergamon Press, New York, (1985)
  11. A. Lacoste, S. Bechu, Y. Arnal, J. Pelletier, C. Vallee, R. Gouttebaron, J. P. Stoquert, Surf. Coat. Technol., 156, 125 (2002) https://doi.org/10.1016/S0257-8972(02)00076-2
  12. J. L. Vossen, W. Kern, Thin Film Process, Academic Press, New York (1978)
  13. J. W. Park, C. W. Sohn, B. H. Choi, Current Applied Physics, 6, 188 (2006) https://doi.org/10.1016/j.cap.2005.07.038

Cited by

  1. The proton engineering frontier project: Applications of accelerator technology vol.61, pp.2, 2012, https://doi.org/10.3938/jkps.61.173