• 제목/요약/키워드: Nuclear Hydrogen Production

검색결과 115건 처리시간 0.027초

원자력 수소 경제성 비교를 위한 수소 생산 방법별 생산단가 분석 (Analysis of Hydrogen Production Cost by Production Method for Comparing with Economics of Nuclear Hydrogen)

  • 임미숙;방진환;윤영식
    • 한국수소및신에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.218-226
    • /
    • 2006
  • It can be obtained from hydrocarbon and water, specially production of hydrogen from natural gas is most commercial and economical process among the hydrogen production methods, and has been used widely. However, conventional hydrogen production methods are dependent on fossil fuel such as natural gas and coal, and it may be faced with problems such as exhaustion of fossil fuels, production of greenhouse gas and increase of feedstock price. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. However, nuclear hydrogen must be economical comparing with conventional hydrogen production method. Therefore, hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range.

고온전기분해 이용 원자력수소 예비타당성 연구 (Preliminary Cost Estimates for Nuclear Hydrogen System Based on High Temperature Electrolysis)

  • 양경진;이태훈;이기영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.228.2-228.2
    • /
    • 2010
  • In this work, the hydrogen production costs of the nuclear energy sources are estimated in the necessary input data on a Korean specific basis. G4-ECONS was appropriately modified to calculate the cost for hydrogen production of HTE process with Very High Temperature nuclear Reactor (VHTR) as a thermal energy source rather than the LUEC (Levelized Unit Electricity Cost). The general ground rules and assumptions follow G4-ECONS. Through a preliminary study of cost estimates, we wished to evaluate the economic potential for hydrogen produced from nuclear energy, and, in addition, to promptly estimate the hydrogen production costs for an updated input data for capital costs. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if $CO_2$ capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of $CO_2$. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed.

  • PDF

초고온가스원자로 열원 SI 공정을 이용한 원자력수소생산시스템 비용 예비 분석 (Preliminary cost estimation for large-scale nuclear hydrogen production based on SI process)

  • 양경진;최재혁;이기영;이태훈;이경우;김만응
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.723-726
    • /
    • 2009
  • As a preliminary study of cost estimates for nuclear hydrogen systems, the hydrogen production costs of the nuclear energy sources benchmarking GT-MHR are estimated in the necessary input data on a Korean specific basis. G4-ECONS developed by EMWG of GIF in 2008 was appropriately modified to calculate the cost for hydrogen production of SI process with VHTR as a thermal energy source rather than the LUEC. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if $CO_2$ capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of $CO_2$. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed.

  • PDF

초고온가스로를 이용한 원자력수소생산 기술개발 (Nuclear Hydrogen Production Technology Development Using Very High Temperature Reactor)

  • 김용완;김응선;이기영;김민환
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권4호
    • /
    • pp.299-305
    • /
    • 2015
  • 미래에너지의 해법으로 원자력에너지를 이용한 물분해 수소생산시스템의 핵심기술을 개발하였다. 안전성을 보장할 수 있는 제4세대 원자로인 초고온가스로의 고열을 이용하여 황요오드 열화학적인 방법으로 물을 분해하여 수소를 생산하는 기술이다. 원자력수소생산 핵심기술은 초고온에서의 열을 공급하는 것을 모사하는 초고온 실험기술, 초고온가스로의 안전성을 모사하는 연구, 초고온가스로의 노심과 안전성을 해석할 수 있는 도구의 개발, 초고온가스로에 사용하는 연료제조기술, 물을 분해하여 열화학적인 방법으로 수소를 생산하는 기술로 구성된다. 원자력수소생산에 필요한 핵심기술을 개발하고 실험실 규모로 입증하였으며, 대규모 실용화를 위해서 선결되어할 미완성 기술을 제시하였다. 본 기술은 제4세대 원자로개발 국제공동연구로 수행한 기술로서 향후 미래의 원자로 기술이다.

Hydrogen production using high temperature reactors: an overview

  • Deokattey, Sangeeta;Bhanumurthy, K.;Vijayan, P.K.;Dulera, I.V.
    • Advances in Energy Research
    • /
    • 제1권1호
    • /
    • pp.13-33
    • /
    • 2013
  • The present work is an attempt to provide an overview, about the status of R&D and current trends in Hydrogen Production using High Temperature Reactors. Bibliographic references from the INIS database, the Science Direct database and the NTIS database were downloaded and analyzed. Ten year data on the subject, published between 2001 and 2010, was selected for the study. Appropriate qued ry formulations on these databases, resulted in the retrieval of 621 unique bibliographic records. Using the content analysis method, all the records were analyzed. Part One of the analysis details Scientometric R&D indicators, Part Two is a subject-based analysis, grouped under: A. International Initiatives and Programmes for Hydrogen Production; B. European R&D initiatives for Hydrogen production; C. National Initiatives and Programmes for Nuclear Hydrogen Production; D. Reactor Technologies for Nuclear Hydrogen production; E. Fuel Developments; F. Hydrogen Production Processes using HTRs and G. Materials Consideration for Nuclear Hydrogen Production. The results of this analysis are summarized in the study.

국내 수소 수요현황 파악을 통한 원자력 수소의 공급 용량 예측 안 (Suggestion of nuclear hydrogen supply by analyzing status of domestic hydrogen demand)

  • 임미숙;방진환;오전근;윤영식
    • 한국수소및신에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.90-97
    • /
    • 2006
  • Hydrogen is used as a chemical feedstock in several important industrial processes, including oil refineries and petro-chemical production. But, nowadays hydrogen is focused as energy carrier on the rising of problems such as exhaustion of fossil fuel and environmental pollution. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases, and research of nuclear hydrogen, therefore, has been worked with goal to demonstrate commercial production in 2020. The oil refineries and petro-chemical plant are very large, centralized producers and users of industrial hydrogen, and high-potential early market for hydrogen produced by nuclear energy. Therefore, it is essential to investigate and analyze for state of domestic hydrogen market focused on industrial users. Hydrogen market of petro-chemical industry as demand site was investigated and worked for demand forecast of hydrogen in 2020. Also we suggested possible supply plans of nuclear hydrogen considered regional characteristics and then it can be provided basis for determination of optimal capacity of nuclear hydrogen plant in 2020.

TWO-DIMENSIONAL SIMULATION OF HYDROGEN IODIDE DECOMPOSITION REACTION USING FLUENT CODE FOR HYDROGEN PRODUCTION USING NUCLEAR TECHNOLOGY

  • CHOI, JUNG-SIK;SHIN, YOUNG-JOON;LEE, KI-YOUNG;CHOI, JAE-HYUK
    • Nuclear Engineering and Technology
    • /
    • 제47권4호
    • /
    • pp.424-433
    • /
    • 2015
  • The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of $H_2O$ was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

PERSPECTIVES OF NUCLEAR HEAT AND HYDROGEN

  • Lee, Won-Jae;Kim, Yong-Wan;Chang, Jong-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제41권4호
    • /
    • pp.413-426
    • /
    • 2009
  • Nuclear energy plays an important role in world energy production by supplying 6% of the world's current total electricity production. However, 86% of the energy consumed worldwide to produce industrial process heat, to generate electricity and to power the transportation sector still originates in fossil fuels. To cope with dwindling fossil fuels and climate change, it is clear that a clean alternative energy that can replace fossil fuels in these sectors is urgently required. Clean hydrogen energy is one such alternative. Clean hydrogen can play an important role not only in synthetic fuel production but also through powering fuel cells in the anticipated hydrogen economy. With the introduction of the high temperature gas-cooled reactor (HTGR) that can produce nuclear heat up to $950^{\circ}C$ without greenhouse gas emissions, nuclear power is poised to broaden its mission beyond electricity generation to the provision of nuclear process heat and the massive production of hydrogen. In this paper, the features and potential of the HTGR as the energy source of the future are addressed. Perspectives on nuclear heat and hydrogen applications using the HTGR are discussed.