DOI QR코드

DOI QR Code

Fabrication of Nitride Fuel Pellets by Using Simulated Spent Nuclear Fuel

모의 사용후 핵연료를 이용한 질화물 핵연료 소결체 제조

  • 류호진 (한국원자력연구원 재순환핵연료기술개발부) ;
  • 이재원 (한국원자력연구원 재순환핵연료기술개발부) ;
  • 이영우 (한국원자력연구원 재순환핵연료기술개발부) ;
  • 이정원 (한국원자력연구원 재순환핵연료기술개발부) ;
  • 박근일 (한국원자력연구원 재순환핵연료기술개발부)
  • Published : 2008.04.28

Abstract

In order to investigate a nitriding process of spent oxide fuel and the subsequent change in thermal properties after nitriding, simulated spent fuel powder was converted into a nitride pellet with simulated fission product elements through a carbothermic reduction process. Nitriding rate of simulated spent fuel was decreased with increasing of the amount of fission products. Contents of Ba and Sr in simulated spent fuel were decreased after the carbothermic reduction process. The thermal conductivity of the nitride pellet was decreased by an addition of fission product element but was higher than that of the oxide fuel containing fission product elements.

Keywords

References

  1. L. C. Walters, D. L. Porter and D. C. Crawford: Prog. Nucl. Energy, 40 (2002) 513 https://doi.org/10.1016/S0149-1970(02)00045-8
  2. D. C. Crawford, D. L. Porter and S. L. Hayes: J. Nucl. Mater., 371 (2007) 202 https://doi.org/10.1016/j.jnucmat.2007.05.010
  3. K. Minato, M. Akabori, M. Takano, Y. Arai, K. Nakajima, A. Itoh and T. Ogawa: J. Nucl. Mater., 320 (2003) 18 https://doi.org/10.1016/S0022-3115(03)00163-6
  4. Y. Arai and K. Minato: J. Nucl. Mater., 344 (2005) 180 https://doi.org/10.1016/j.jnucmat.2005.04.039
  5. H. Takano and K. Nishihara: Prog. Nucl. Energy, 40 (2002) 473 https://doi.org/10.1016/S0149-1970(02)00040-9
  6. N. Hadibi-Olschewski, J.-P. Glatz, H. Bokelund and M. J.-F. Leroy: J. Nucl. Mater., 188 (1992) 244 https://doi.org/10.1016/0022-3115(92)90479-5
  7. US DOE: Report to Congress on the Advanced Fuel Cycle Initiative, 2003
  8. US DOE: A Technology Roadmap for Generation IV Nuclear Energy Systems, 2002
  9. US DOE: Global Nuclear Energy Partnership, www.gnep.energy.gov
  10. B. A. Hilton, D. L. Porter and S. L. Hayes: ANS meeting on Nuclear Fuels and Structural Materials for the Next Generation Reactors, Reno, NV, 4-8 June 2006
  11. T. Muromura and H. Tagawa: J. Nucl. Mater., 71 (1977) 65 https://doi.org/10.1016/0022-3115(77)90187-8
  12. Y. Arai, S. Fukushima, K. Shiozawa and M. Handa: J. Nucl. Mater., 168 (1989) 280 https://doi.org/10.1016/0022-3115(89)90593-X
  13. C. Ganguly, P. V. Hegde and A. K. Sengupta: J. Nucl. Mater., 178 (1991) 234 https://doi.org/10.1016/0022-3115(91)90391-J
  14. D. D. Sood, R. Agarwal and V. Venugopal: J. Nucl. Mater., 247 (1997) 293 https://doi.org/10.1016/S0022-3115(97)00077-9
  15. Hj. Matzke: Science of advanced LMFBR fuels, North Holland, Amsterdam (1986)
  16. H. Blank: Materials Science Technology, B. R. T. Frost (Ed.), Nuclear Materials, Ch.4. Nonoxide ceramic nuclear fuels, 10A, VCH, Weinheim (1994)
  17. J. W. Lee, W. K. Kim, J. W. Lee, G. I. Park, M. S. Yang and K. C Song: J. Nucl. Sci. Technol., 44 (2007) 597 https://doi.org/10.3327/jnst.44.597
  18. H. J. Ryu, K. C. Song, G. I. Park, J. W. Lee and M. S. Yang: J. Phys. Chem. Solids, 66 (2005) 671 https://doi.org/10.1016/j.jpcs.2004.06.080
  19. K. H. Kang, S. H. Na, K. C. Song, S. H. Lee and S. W. Kim: Thermochim. Acta, 455 (2007) 129 https://doi.org/10.1016/j.tca.2006.11.021
  20. M. S. Yang, K. C. Song and S. W. Park: J. Nucl. Mater., In Press (2008)
  21. J. M. Shin and J. J. Park: Korean J. Chem. Eng., 18 (2001) 1010 https://doi.org/10.1007/BF02705634
  22. R. Thetford and M. Mignanelli: J. Nucl. Mater., 320 (2003) 44 https://doi.org/10.1016/S0022-3115(03)00170-3
  23. P. G. Lucuta, Hj. Matzke and R. A. Verrall: J. Nucl. Mater., 217 (1994) 279 https://doi.org/10.1016/0022-3115(94)90377-8
  24. M. Sheindlin, D. Halton, M. Musella and C. Ronchi: Rev. Sci. Instrum., 69 (1998) 1426 https://doi.org/10.1063/1.1148776
  25. Y. Aral, K. Nakajima and Y. Suzuki: J. Alloys Compd., 271-273 (1998) 602 https://doi.org/10.1016/S0925-8388(98)00168-6