Browse > Article
http://dx.doi.org/10.4150/KPMI.2008.15.2.087

Fabrication of Nitride Fuel Pellets by Using Simulated Spent Nuclear Fuel  

Ryu, Ho-Jin (Korea Atomic Energy Research Institute)
Lee, Jae-Won (Korea Atomic Energy Research Institute)
Lee, Young-Woo (Korea Atomic Energy Research Institute)
Lee, Jung-Won (Korea Atomic Energy Research Institute)
Park, Geun-Il (Korea Atomic Energy Research Institute)
Publication Information
Journal of Powder Materials / v.15, no.2, 2008 , pp. 87-94 More about this Journal
Abstract
In order to investigate a nitriding process of spent oxide fuel and the subsequent change in thermal properties after nitriding, simulated spent fuel powder was converted into a nitride pellet with simulated fission product elements through a carbothermic reduction process. Nitriding rate of simulated spent fuel was decreased with increasing of the amount of fission products. Contents of Ba and Sr in simulated spent fuel were decreased after the carbothermic reduction process. The thermal conductivity of the nitride pellet was decreased by an addition of fission product element but was higher than that of the oxide fuel containing fission product elements.
Keywords
Spent nuclear fuel; Nitride fuel; Carbothermic reduction; Thermal conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 US DOE: A Technology Roadmap for Generation IV Nuclear Energy Systems, 2002
2 J. W. Lee, W. K. Kim, J. W. Lee, G. I. Park, M. S. Yang and K. C Song: J. Nucl. Sci. Technol., 44 (2007) 597   DOI   ScienceOn
3 P. G. Lucuta, Hj. Matzke and R. A. Verrall: J. Nucl. Mater., 217 (1994) 279   DOI   ScienceOn
4 K. H. Kang, S. H. Na, K. C. Song, S. H. Lee and S. W. Kim: Thermochim. Acta, 455 (2007) 129   DOI   ScienceOn
5 H. J. Ryu, K. C. Song, G. I. Park, J. W. Lee and M. S. Yang: J. Phys. Chem. Solids, 66 (2005) 671   DOI   ScienceOn
6 Y. Arai and K. Minato: J. Nucl. Mater., 344 (2005) 180   DOI   ScienceOn
7 Y. Arai, S. Fukushima, K. Shiozawa and M. Handa: J. Nucl. Mater., 168 (1989) 280   DOI   ScienceOn
8 L. C. Walters, D. L. Porter and D. C. Crawford: Prog. Nucl. Energy, 40 (2002) 513   DOI   ScienceOn
9 D. C. Crawford, D. L. Porter and S. L. Hayes: J. Nucl. Mater., 371 (2007) 202   DOI   ScienceOn
10 K. Minato, M. Akabori, M. Takano, Y. Arai, K. Nakajima, A. Itoh and T. Ogawa: J. Nucl. Mater., 320 (2003) 18   DOI   ScienceOn
11 D. D. Sood, R. Agarwal and V. Venugopal: J. Nucl. Mater., 247 (1997) 293   DOI   ScienceOn
12 H. Takano and K. Nishihara: Prog. Nucl. Energy, 40 (2002) 473   DOI   ScienceOn
13 N. Hadibi-Olschewski, J.-P. Glatz, H. Bokelund and M. J.-F. Leroy: J. Nucl. Mater., 188 (1992) 244   DOI   ScienceOn
14 C. Ganguly, P. V. Hegde and A. K. Sengupta: J. Nucl. Mater., 178 (1991) 234   DOI   ScienceOn
15 Hj. Matzke: Science of advanced LMFBR fuels, North Holland, Amsterdam (1986)
16 H. Blank: Materials Science Technology, B. R. T. Frost (Ed.), Nuclear Materials, Ch.4. Nonoxide ceramic nuclear fuels, 10A, VCH, Weinheim (1994)
17 M. S. Yang, K. C. Song and S. W. Park: J. Nucl. Mater., In Press (2008)
18 US DOE: Report to Congress on the Advanced Fuel Cycle Initiative, 2003
19 US DOE: Global Nuclear Energy Partnership, www.gnep.energy.gov
20 B. A. Hilton, D. L. Porter and S. L. Hayes: ANS meeting on Nuclear Fuels and Structural Materials for the Next Generation Reactors, Reno, NV, 4-8 June 2006
21 M. Sheindlin, D. Halton, M. Musella and C. Ronchi: Rev. Sci. Instrum., 69 (1998) 1426   DOI   ScienceOn
22 T. Muromura and H. Tagawa: J. Nucl. Mater., 71 (1977) 65   DOI   ScienceOn
23 J. M. Shin and J. J. Park: Korean J. Chem. Eng., 18 (2001) 1010   DOI
24 R. Thetford and M. Mignanelli: J. Nucl. Mater., 320 (2003) 44   DOI   ScienceOn
25 Y. Aral, K. Nakajima and Y. Suzuki: J. Alloys Compd., 271-273 (1998) 602   DOI   ScienceOn