DOI QR코드

DOI QR Code

Effects of Dietary Escherichia coli Phytase Supplementation on Growth Performance, Carcass Quality and Excretion of Copper and Zinc Concentrations in Finishing Pigs

Escherichia coli phytase의 첨가가 비육돈의 생산성, 도체특성 및 분 내 구리와 아연 함량에 미치는 영향

  • Kim, Y.H. (National Institute of Animal Science, RDA) ;
  • Shin, S.O. (Department of Animal Resource & Science, Dankook University) ;
  • Park, J.C. (National Institute of Animal Science, RDA) ;
  • Jung, H.J. (National Institute of Animal Science, RDA) ;
  • Cho, J.H. (Department of Animal Resource & Science, Dankook University) ;
  • Chen, Y.J. (Department of Animal Resource & Science, Dankook University) ;
  • Yoo, J.S. (Department of Animal Resource & Science, Dankook University) ;
  • Moon, H.G. (National Institute of Animal Science, RDA) ;
  • Ji, S.Y. (National Institute of Animal Science, RDA) ;
  • Kim, I.C. (National Institute of Animal Science, RDA) ;
  • Lee, S.J. (National Institute of Animal Science, RDA) ;
  • Kim, I.H. (Department of Animal Resource & Science, Dankook University)
  • Published : 2008.02.01

Abstract

This study was conducted to evaluate effects of dietary Escherichia coli phytase supplementation on growth performance, carcass quality and excretion of copper and zinc concentrations in finishing pigs. The total of seventy two [(Landrace×Yorkshire)×Duroc] pigs(65.43±0.72 kg in average initial body weight) were used in 56 days assay. Dietary treatments included 1) CON (basal diet) 2) P5(basal diet+phytase 0.05%) and 3) P10 (basal diet + phytase 0.1%). There were three dietary treatments with six replicate pens per treatment and four pigs per pen. During the overall periods, ADFI(Average daily feed intake) was increased (P<0.05) in phytase supplementation treatments compared to CON treatment. At the 5th week, dry matter, nitrogen and ash digestibilities were higher in P5 treatment than in CON and P10 treatments(P<0.05) and CON treatment showed the lowest effect on nutrition digestibility(P<0.05). However, phosphorus digestibility was higher in both phytase supplementation treatments than in CON treatment(P<0.05). The pH of M. logissimus dorsi was significantly higher in CON treatment than phytase supplementation treatments(P<0.05). L* value of M. logissimus dorsi muscle color was significantly increased(P<0.05) in P10 treatment compared to CON and P5 treatments. Also, a* value was increased (P<0.05) in CON treatment compared with phytase supplementation treatments. However, excretion of copper and zinc concentrations were no significant difference among the treatments. In conclusion, the effect of Escherichia coli phytase showed in ADFI, digestibilities, pH and color of meat in finishing pigs.

본 연구는 비육돈에 Escherichia coli phytase를 첨가 급여하여 생산성, 도체특성 및 분 내 구리와 아연 함량에 미치는 영향에 대하여 알아보기 위해 시험을 실시하였다. 3원 교잡종 비육돈 72두를 공시하였으며, 시험 개시시 체중이 65.43±0.72kg 이었고, 56일간 사양시험을 실시하였다. 시험설계는 1) CON(기초사료), 2) P5(기초사료+phytase 0.05%) 및 3) P10(기초사료 + phytase 0.1%)로 3개 처리를 하여 처리당 6반복, 반복당 4두씩 완전임의 배치하였다. 전체시험 기간 동안 사료섭취량은 phytase를 첨가한 처리구가 대조구와 비교하여 높게 나타났다(P<0.05). 시험 5주에서 건물, 질소 및 회분 소화율은 P5 처리구가 대조구 및 P10 처리구와 비교하여 유의적으로 가장 높게 나타났으며(P<0.05), 대조구가 가장 낮게 나타났다(P<0.05). 인 소화율은 phytase를 첨가한 처리구가 대조구와 비교하여 유의적으로 높게 나타났으며(P<0.05), 육의 pH는 대조구가 phytase를 첨가한 처리구와 비교하여 유의적으로 높게 나타났다(P<0.05). 육색에 있어서 명도를 나타내는 L* 값은 P10처리구가 대조구 및 P5 처리구와 비교하여 유의적으로 가장 높게 나타났으며, 적색도를 나타내는 a* 값은 대조구가 phytase를 첨가한 처리구와 비교하여 유의적으로 가장 높게 나타났다(P<0.05). 분내 구리와 아연의 함량은 처리구간에 유의적인 차이가 없었다(P>0.05). 결론적으로, 본 시험의 결과 비육돈에 phytase의 첨가 급여는 일당사료섭취량, 영양소 소화율, 육내 pH 및 육색에 영향을 미치는 것으로 사료된다.

Keywords

References

  1. Adeola, O., Sands, J. S., Simmins, P. H. and Schulze, H. 2004. The efficacy of an Escherichia coli-derived phytase preparation preparation. J. Anim. Sci. 82:2657-2666
  2. AOAC. 1995. Official method of analysis. 16th ed. Association of official Analytical Chemists. Washington, D. C
  3. Augspurger, N. R., Webel, D. M. and Baker, D. H. 2007. An Escherichia coli phytase expressed in yeast effectively replaces inorganic phosphorus for finishing pigs and laying hens. J. Anim. Sci. 85: 1192-1198 https://doi.org/10.2527/jas.2006-340
  4. Braude, R. 1967. Copper as a stimulant in pig feeding(cuprum propecunia). World Rev. Anim. Prod. 3:69
  5. Cheryan, M. 1980. Phytic acid interactions in food systems. CRC Crit. Rev. Food Sci. 13:297-335 https://doi.org/10.1080/10408398009527293
  6. Davies, N. T. and Olpin, S. E. 1979. Studies on the phytate: zinc molar contents in diets as a determinant of Zn availability to young rats. Br. J. Nutr. 41:590
  7. Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics. 11:1-14 https://doi.org/10.2307/3001478
  8. Edmonds, J. S., Izquiendo, O. A. and Baker, D. H. 1985. Feed additive studies with newly weaned pigs: Efficacy of supplemental copper, antibiotics and organic acids. J. Anim. Sci. 60:462-479 https://doi.org/10.2527/jas1985.602462x
  9. Graf, E. 1983. Calcium binding to phytic acid. J. Agr. Food Chem. 31:851 https://doi.org/10.1021/jf00118a045
  10. Harper, A. F., Kornegay E. T. and Schell T. C. 1997. Phytase supplementation of Low-Phosphorus growing-finishing pig diets improves performance, phosphorus digestibility, and bone mineralization and reduces phosphorus excretion. J. Anim. Sci. 75:3174-3186
  11. Hartman, G. H. J. 1979 Removal of phytate from soy protein. J. Amer. Oil Chemists Soc. 65:731
  12. Hofmann, K., Hamm R. and Bluchel, E. 1982. New information on the determination of water binding in meat by the filter paper press method. Fleischwirtsch 62:87-94
  13. Jendza, J. A., Dilger, R. N., Adedokun, S. A., Sands, J. S. and Adeola, O. 2005. Escherichia coli phytase improves growth performance of starter, grower, and finisher pigs fed phosphorus- deficient diets. J. Anim. Sci. 83:1882-1889
  14. Lei, X. G., Ku, P. K., Miller, E. R., Ullrey, D. E. and Yokoyama, M. T. 1993. Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J. Nutr. 123:1117
  15. Maddaih, V. T., Kurnick, A. A. and Reid, B. L. 1964. Phytic acid studies. Proc. Soc. Exp. Biol. Med. 115:91
  16. Maribo, H., Olsen. E. V., Barton-Gade. P., Moller, A. J. and Karlsson. A. 1998. Effect of early post- mortem cooling on temperature, pH fall and meat quality in pigs. Meat Science. 50:115-129 https://doi.org/10.1016/S0309-1740(98)00022-9
  17. Miller, E. R., Liptrap, D. O. and Ullrey, D. E. 1970. Sex influence on zinc requirement of swine. pp. 377-379 in trace element metabolism in animals, C. F. Mills, ed. Edinburgh: E. & S. Livingstone
  18. Miller, E. R., Stowe, H. D., Ku, P. K. and Hill, G. M. 1979. Copper and zinc in swine nutrition. P. 109 in National Feed Ingredients Association Literature Review on Copper and Zinc in Animal Nutrition. West Des Moines, Iowa: National Feed Ingredients Association
  19. Nasi, M. 1990. Microbial phytase supplementation for improving availability of plant phosphorus in the diet of the growing pig. J. Agric. Sci. Finl. 62:435
  20. NRC. 1988. Nutrient requirements of domestic animals, No. 2. Nutrient requirements of swine. Ninth revised edition. National Academy of Science. Washington. D.C
  21. NRC. 1998. Nutrient Requirements of swine. National Research Council, Academy Press
  22. Pallauf, J., Rimbach, G., Pippig, S., Schindler, B. and Most, E. 1994. Effect of phytase supplement- ation to a phytate-rich diet based on wheat, barley and soya on the bioavailability of dietary phosphorus, calcium, magnesium, zinc, and protein in piglets. Agribio. Res. 47:39
  23. Peeler, H. T. 1972. Biological availability of nutrients in feeds: Availability of major mineral ions. J. Anim. Sci. 35:695-699 https://doi.org/10.2527/jas1972.353695x
  24. Q'Quinn, P. R., Knabe, D. A. and Gregg, E. J. 1997. Efficacy of Natuphos$^{\cercledR}$ in Sorghum-Based Diets of Finishing Swine. J. Anim. Sci. 75:1299-1307
  25. Reddy, N. R., Sathe, S. K. and Salunkhe, D. K. 1982. Phytases in legumes and cereals. Adv. Food Res. 28:1-92
  26. Rodriguez, E., Han, Y. and Lei, X. G. 1999. Cloning, sequencing and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon. Biochem. Biophys. Res. Comm. 257:117-123 https://doi.org/10.1006/bbrc.1999.0361
  27. SAS. 1996. SAS user's guide: Statisics, SAS Inst, Inc., Cary, NC
  28. Shelton, J. L., Southern, L. L., Lemieux, F. M., Bidner, T. D. and Page, T. G. 2004. Effects of microbial phytase, low calcium and phosphorus, and removing the dietary trace mineral premix on carcass traits, pork quality, plasma metabolites, and tissue mineral content in growing-finishing pigs. J. Anim. Sci. 82:2630-2639
  29. Veum, T. L., Bollinger D. W., Buff, C. E. and Bedford, M. R. 2006. A genetically engineered Escherichia coli phytase improves nutrient utilization, growth performance, and bone strength of young swine fed diets deficient in available phosphorus. J. Anim. Sci. 84:1147-1158
  30. Vohra, P., Gray, G. A. and Kratzer, F. H. 1965. Phytic acid-metal complexes. Proc. Soc. Exp. Biol. Med. 120:447
  31. Warriss, P. D. and Brown, S. N. 1987. The relationships between initial pH, reflectance and exudation in pig muscle, Meat Sci. 20:65 https://doi.org/10.1016/0309-1740(87)90051-9
  32. Witte, V. C., Krause, G. F. and Bailey, M. E. 1970. A new extraction method for determining 2- thiobarbituric acid values for pork and beef during storage. J. Food Sci. 35:582-587 https://doi.org/10.1111/j.1365-2621.1970.tb04815.x
  33. Young, L. G., Leunissen, M. and Atkinson, J. L. 1993. Addition of microbial phytase to diets of young pigs. J. Anim. Sci. 71:2147
  34. 권관, 한인규, 손광수, 권찬호. 1995. 옥수수-대두박 위주 사료에 phytase의 첨가가 육성돈 및 비육돈의 성장능력, 영양소 소화율 및 인 배설량에 미치는 영향. 한국축산학회지. 37(4):341-352
  35. 권관, 권찬호, 정흥우, 유문일, 손광수, 현영, 박승춘. 1999. 미생물 phytase의 첨가가 육성돈과 비육돈의 성장에 미치는 효과. 한국축산학회지. 41(6):645-654
  36. 김병한, 남궁환, 백인기. 2002. 육계의 인 이용율 향상을 위한 식물성 phytase의 이용. 한국동물자원학회지. 44(4):407-418
  37. 김은주. 1999. 단위동물에 있어 phytase 사료 첨가시 영양소 소화율과 칼슘 및 인 이용률에 미치는 효과. 단국대학교 대학원 석사학위논문
  38. 김충현. 2005. 파이테이즈의 수준별 첨가가 육성.비육돈의 성장, 도체특성, 뼈 강도 및 인 이용성에 미치는 영향. 서울대학교 대학원 석사학위논문