DOI QR코드

DOI QR Code

The Effect of Solution Agitation on the Electroless Cu Deposition Within Nano-patterns

용액 교반이 미세 패턴 내 무전해 구리 도금에 미치는 영향

  • Lee, Joo-Yul (Department of Surface Technology, Korea of Materials Science) ;
  • Kim, Man (Department of Surface Technology, Korea of Materials Science) ;
  • Kim, Deok-Jin (Electronic Materials Engineering, Sunmoon University)
  • 이주열 (한국기계연구원 부설 재료연구소 표면기술연구부) ;
  • 김만 (한국기계연구원 부설 재료연구소 표면기술연구부) ;
  • 김덕진 (선문대학교 신소재 공학과)
  • Published : 2008.02.29

Abstract

The effect of solution agitation on the copper electroless deposition process of ULSI (ultra large scale integration) interconnections was investigated by using physical, electrochemical and electrical techniques. It was found that proper solution agitation was effective to obtain superconformal copper configuration within the trenches of $130{\sim}80nm$ width. The transition of open potential during electroless deposition process showed that solution agitation induced compact structure of copper deposits by suppressing mass transfer of cuprous ions toward substrate. Also, the specific resistivity of copper layers was lowered by increasing agitation speed, which made the deposited copper particles smaller. Considering both copper deposit configuration and electric property, around 500 rpm of solution agitation was the most suitable for the homogeneous electroless copper filling within the ultra-fine patterns.

Keywords

References

  1. J. J. Kim, S.-K. Kim, C. H. Lee, Y. S. Kim, J. Vac. Sci. Technol., B 21 (2003) 33
  2. K. Weiss, S. Riedel, S. E. Schulz, M. Schwerd, H. Helneder, H. Wendt, T. Gessner, Microelectron. Eng., 50 (2000) 433 https://doi.org/10.1016/S0167-9317(99)00312-3
  3. T. Hara, S. Kamijima, Y. Shimura, Electrochem. Solid-State Lett., 6 (2003) C8 https://doi.org/10.1149/1.1527410
  4. G. Oskam, P. M. Vereeken, P. C. Searson, J. Electrochem. Soc., 146 (1999) 1436 https://doi.org/10.1149/1.1391782
  5. T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Staishevsky, D. R. Kelly, G. R. Stafford, D. Josell, J. Electrochem. Soc., 147 (2000) 4524 https://doi.org/10.1149/1.1394096
  6. S.-K. Kim, S. K. Cho, J. J. Kim, Y.-S. Lee, Electrochem. Solid-State Lett., 8 (2005) C19 https://doi.org/10.1149/1.1833687
  7. S. P. Muraka, Mater. Sci. Eng., R19 (3-4) (1997) 87
  8. T. Osaka, N. Takano, T. Kurokawa, T. Kaneko, K. Ueno, J. Electrochem. Soc., 149 (2002) 573 https://doi.org/10.1149/1.1512669
  9. I. Koiwa, M. Usada, T. Osaka, J. Electrochem. Soc., 135 (1998) 1222 https://doi.org/10.1149/1.2095931
  10. M. Yoshino, Y. Nonaka, J. Sasano, I. Matsuda, Y. Shacham-Diamand, T. Osaka, Electrochim. Acta, 51 (2005) 916 https://doi.org/10.1016/j.electacta.2005.04.069
  11. J. H. Huang, Y.-S. Lai, S. J. S. Chen, J. Electrochem. Soc., 148 (2001) F133 https://doi.org/10.1149/1.1374218
  12. S. Ezhilvalavn, T.-Y. Tseng, Mater. Chem. Phys., 65 (2000) 227 https://doi.org/10.1016/S0254-0584(00)00253-4
  13. T. Aoyama, M. Kiyotoshi, S. Yamakim, K. Eguchi, Jpn. J. Appl. Phys. Part 1, 38 (1999) 2194 https://doi.org/10.1143/JJAP.38.2194
  14. M. Hasegawa, Y. Okinaka, Yosi Shacham-Diamand, T. Osaka, Electrochem. Solid-State Lett., 9, (2006) C138-C140 https://doi.org/10.1149/1.2206008
  15. M. Hasegawa, N. Yamachika, Yosi Shacham- Diamand, Y. Okinaka, T. Osaka, Appl. Phys. Lett., 90, 10, (2007) 101916 https://doi.org/10.1063/1.2712505