Experiment and Simulation of 4-bed PSA for Hydrogen Separation from Multi-Component Mixture Gases

다성분 혼합 기체로부터 수소 분리를 위한 4-bed PSA 실험과 전산 모사

  • Yang, Se-Il (Energy & Environment Research Division, Korea Institute of Science and Technology) ;
  • Park, Ju-Yong (Energy & Environment Research Division, Korea Institute of Science and Technology) ;
  • Jang, Seong-Cheol (Energy & Environment Research Division, Korea Institute of Science and Technology) ;
  • Choi, Do-Young (Energy & Environment Research Division, Korea Institute of Science and Technology) ;
  • Kim, Sung-Hyun (Department of Chemical and Biological Engineering, Korea University) ;
  • Choi, Dae-Ki (Energy & Environment Research Division, Korea Institute of Science and Technology)
  • 양세일 (한국과학기술연구원 에너지환경연구본부) ;
  • 박주용 (한국과학기술연구원 에너지환경연구본부) ;
  • 장성철 (한국과학기술연구원 에너지환경연구본부) ;
  • 최도영 (한국과학기술연구원 에너지환경연구본부) ;
  • 김성현 (고려대학교 화공생명공학과) ;
  • 최대기 (한국과학기술연구원 에너지환경연구본부)
  • Received : 2007.09.28
  • Accepted : 2007.10.25
  • Published : 2008.04.30

Abstract

Adsorption experiments for $H_2$, $CH_4$, CO, $CO_2$ on activated carbon and zeolite 5A were performed by static volumetric method. A 4-bed pressure swing adsorption (PSA) process was to study separation of hydrogen from multi-component mixture gases ($H_2$ 72.2%, $CH_4$ 4.06%, CO 2.03%, $CO_2$ 21.6%). Dual-site langmuir (DSL) isotherm showed good or fair agreement with the experimental results. The optimum height of activated carbon layer was 55 cm with breakthrough results on the packing ratio of activated carbon to zeolite 5A. In PSA process, the effects of the process parameters such as total cycle time ($T_c$), ${\Delta}P$ at the provide purge step and adsorption pressure on the PSA performance were studied experimentally and theoretically.

활성탄과 제올라이트에 대한 $H_2$, $CH_4$, CO, $CO_2$에 대한 흡착평형 실험을 정적부피법에 의해 수행하였다. 활성탄과 제올라트를 이용한 4탑 PSA 공정을 통하여 다성분 혼합기체($H_2$ 72.2%, $CH_4$ 4.06%, CO 2.03%, $CO_2$ 21.6%)로부터 수소를 분리하는 연구를 수행하였다. 흡착평형 실험결과 각각의 기체들에 대하여 dual-site langmuir(DSL) 모델이 잘 예측을 하였으며, 활성탄과 제올라이트의 충전비율에 따른 파과특성을 살펴본 결과 최적의 활성탄 층의 높이는 전체 탑 길이 80 cm 중 55 cm로 나타났다. PSA 공정에서 공정 변수인 총 주기시간($T_c$), 세정기체 공급압력차(${\Delta}P$) 그리고 흡착압력이 공정효율에 미치는 영향을 실험과 전산모사를 통해 그 결과를 비교하였다.

Keywords

Acknowledgement

Supported by : (주)SK

References

  1. Yang. R. T., Gas Separation by adsorption Process, Butterworths, Boston(1987)
  2. Nam, G. M., Jeong, B. M., Kang, S. H. Lee, C. H., Lee, B. K. and Choi, D. K., "Experiment and Simulation of 2-bed PSA for Hydrogen Separation from $H_{2}/CH_4$ Gas Mixture," Korean Chem. Eng. Res., 43(2), 249-258(2005)
  3. Jang, D. G., Shin, H. S. Kim, J. N., Cho, S. H. and Suh, S. S., "An Analysis on Multibed PSA Process for Hydrogen Purification," Korean Chem. Eng. Res., 37(6), 882-889(1999)
  4. Yang, J. Y. and Lee, C. H., "Adsorption Dynamic of a Layered Bed PSA for $H_{2}$ Recovery from Coke Oven Gas," AICHE J., 44(6), 1325-1334(1998) https://doi.org/10.1002/aic.690440610
  5. Park, J. H., Kim, J. N., Cho, S. H., Kim, J. D. and Yang, R. T., "Adsorber Dynamics and Optimal Design of Layered Beds for Multicomponent Gas Adsorption", Chem. Eng. Sci., 53(23), 3951-3963(1998) https://doi.org/10.1016/S0009-2509(98)00196-1
  6. Wagner, J. L., "Seletive Adsorption Process, " U.S. Patent 3,430,418 (1969)
  7. Batta, L. B., "Seletive Adsorption Process", U.S. Patent 3,564,816 (1971)
  8. Doong, S. J. and Yang, R. T., "Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption : Pore/Surface Diffusion and Equilibrium Models," AICHE J., 32(3), 397-410 (1986) https://doi.org/10.1002/aic.690320306
  9. Biegler, L. T., Jiang, L. and Fox, V. G., "Recent Advances in Simulation and Optimal Design of Pressure Swing Adsorption Systems," Sep. Puri. Re., 33(1), 1-39(2004)
  10. Ruthven, D. M., Farooq, S. and Knaebel, K. S., Pressure Swing Adsorption, VCH publishers, New York(1994)
  11. Suzuki, M., Adsorption Engineering, Elsevier, Amsterdam (1990)
  12. Mitchell, J. E. and Shendalman, L. H., "A Study of Heatless Adsorption in the Model System $CO_{2}$ in He II," AICHE Symp. Ser., 69(134), 25-32(1973)
  13. Chihara, K. and Suzuki, M., "Simulation of Nonisothermal Pressure Swing Adsorption," J. Chem. Eng. Jpn., 16(1), 53-61(1983) https://doi.org/10.1252/jcej.16.53
  14. Glueckauf, E., "Theory of Chromatography, Part 10. Formular for Diffusion into Sphere and Their Application to Chromatography," Tran. Faraday Soc., 51, 1540-1551(1955) https://doi.org/10.1039/tf9555101540
  15. Ahn, E. S., Jang, S. C., Choi, D. Y., Kim, S. H. and Choi, D. K., "Pure Gas Adsorption Equilibrium for $H_{2}/CO/CO_2$ and Their Binary Mixture on Zeolite 5A," Korean Chem. Eng. Res., 44(5), 460-467(2006)
  16. Aspen Custom Modeler : Modeling Language Reference Guide, Aspen Technology Inc., Cambrige(2003)
  17. Doong, S. J. and Yang, R. T., "Hydregen Purification by the Multibed Pressure Swing Adsorption Process," Reactive Polymers, 6, 7-13(1987)
  18. Sircar, S. and Golden, T. C., "Purification of Hydrogen by Pressure Swing Adsorption," Sep. Sci. Tech., 35(5), 667-687(2000) https://doi.org/10.1081/SS-100100183
  19. Jain, S., Moharir, A. S., Li, P. and Wozny, G., "Heuristic Design of Pressure Swing Adsorption: A Preliminary Study," Sep. Puri. Tech., 33, 25-43(2003) https://doi.org/10.1016/S1383-5866(02)00208-3