Fabrication of Ultrathin Silicon Oxide Layer by Low Pressure Rapid Thermal Oxidation and Remote Plasma Oxidation

저압급속열산화법과 플라즈마확산산화법에 의한 실리콘 산화박막의 제조

  • Ko, Cheon Kwang (Department of Chemical Engineering, Kangwon National University) ;
  • Lee, Won Gyu (Department of Chemical Engineering, Kangwon National University)
  • 고천광 (강원대학교 화학공학과) ;
  • 이원규 (강원대학교 화학공학과)
  • Received : 2008.01.09
  • Accepted : 2008.02.20
  • Published : 2008.04.30

Abstract

In this work, the use of LPRTO (low pressure rapid thermal oxidation) and remote plasma oxidation was evaluated for the preparation of ultra thin silicon oxide layer with less than 5 nm. The silicon oxide thickness grown by LPRTO was rapidly increased and saturated. The maximum thickness could be controlled at about 5 nm. As RF power and oxygen flow rate at a remote plasma oxidation increased, the behavior of oxide growth was almost the same as that of LPRTO. The oxide thickness of 4 nm was the maximum obtained by a remote plasma oxidation in this work. The quality of silicon oxide grown by LPRTO was comparable to the thermally grown conventional oxide.

본 연구에서는 5nm 이하의 실리콘 산화박막 성장을 위하여 저압급속열산화법과 플라즈마확산산화법을 사용하여, 실리콘 산화박막의 성장특성을 분석하였다. 저압급속열산화법으로 기판의 온도와 산소기체의 유량 변화에 따른 실리콘 산화박막의 성장은 공정시간 5분이 경과 할 때 까지 급격한 증가를 보이다 성장 속도가 포화되는 특성을 나타내었다. 또한 $900^{\circ}C$에서 5 nm의 최대 두께를 가진 산화박막을 얻을 수 있었다. 플라즈마확산산화법은 기판의 온도와 압력은 $500^{\circ}C$, 200 mTorr으로 고정했을 때, 플라즈마 세기와 산소기체의 유량이 증가할수록 산화박막의 성장속도는 증가하였다. 보통 4분이 경과한 후 성장속도가 포화영역에 도달하여 산화막의 두께가 거의 일정하게 되는 것을 알 수 있었다. 저압급속열산화법에 의해 성장된 산화박막은 일반열산화법에 의해 제조된 산화박막의 특성과 거의 같았다.

Keywords

References

  1. Batey, J. and Tierney, E., "Low-Temperature Deposition of High-quality Silicon Dioxide by Plasma-Enhanced Chemical Vapor Deposition," J. Appl. Phys., 60(9), 3136-3145(1986) https://doi.org/10.1063/1.337726
  2. Fountain, G. G., Rudder, R. A., Hattangrady, S. V., Markunas, R. J. and Lindorme. P. S., "Low Interface State Density $SiO_{2}$ Deposited at $300^{\circ}C$ by Remote Plasma Enhanced Chemical Vapor Deposition on Reconstructed Si Surface," J. Appl. Phys., 63(9), 4744-4746(1988) https://doi.org/10.1063/1.340133
  3. Landheer, D., Xu, D. X., Tao, Y. and Sproule, G. I., "Effect of Power on Interface and Electrical Properties of $SiO_{2}$ Films Produced by Plasma-Enhanced Chemical-Vapor Deposition," J. Appl. Phys., 77(4), 1600-1606(1995) https://doi.org/10.1063/1.358913
  4. Furukawa, K., Liu, Y., Gao, D., Nakashima, H., Uchino, K. and Muraoke, K., "In Situ FT-IR Reflective Absorption Spectroscopy For Characterization of $SiO_{2}$ Thin Films Deposited Using Sputtering-type Electron Cyclotron Resonance Microwave Plasma," Appl. Surf. Sci., 121/122, 228-232(1997) https://doi.org/10.1016/S0169-4332(97)00294-8
  5. Welsch, E., Walther, H. G., Schafer, D., Wolf, R. and Muller, H., "Correlation Between Morphology, Optical Losses and Laser Damage of $MgF_2-SiO_2$Multilayers," Thin Solids Films., 156(1), 1-10(1988) https://doi.org/10.1016/0040-6090(88)90278-7
  6. Rohles, S., Tieh, E. and Nguyen, B. C., "Moisture Resistance of Plasma Enhanced Chemical Vapor Deposited Oxides Used for Ultralarge Scale Integrated Device Applications," J. Electrochem. Soc., 142(2), 580-585(1995) https://doi.org/10.1149/1.2044102
  7. Pliskin, W. A. and Lehman, H. S., "Structural Evaluation of Silicon Oxide Films," J. Electrochem. Soc., 112(10), 1013-1019(1965) https://doi.org/10.1149/1.2423333
  8. Chang, K. N., Li, C. H., Fahn, F. J., Tsai, J. Y., Yeh, T. H., Wang, S. W. and Yang, J. Y., "Influence of Precleaning Process on the Gate Oxide Film Fabricated by Electron Cyclotron Resonance Plasma Oxidation," J. Electrochem. Soc., 144(1), 311-314(1997) https://doi.org/10.1149/1.1837401
  9. Nayar, V., Botd, I. W., Goodall, F. N. and Arthur, G., "Low Temperature Oxidation of Crystalline Silicon Using Excimer Laser Irradiation," Appl. Surf. Sci., 36(1-4), 134-140(1989) https://doi.org/10.1016/0169-4332(89)90906-9
  10. Fiegna, C., Iwai, H., Wada, T., Saito, M., Sangiorgi, E. and Ricco, B., "Scaling the MOS Transistor Below 0.1 ${\mu}m$: Methodology, Device Structures, and Technology Requirements," IEEE Trans. Electron Devices, 41(6), 941-951(1994) https://doi.org/10.1109/16.293306
  11. Queeney, K. T., Weldon, M. K., Chang, J. P., Chabal, Y. J., Gurevich, A. B., Sapjeta, J. and Opila, R. L., "Infrared Spectroscopic Analysis of Si/$SiO_2$ Interface Structure of Thermally Oxidized Silicon," J. Appl. Phys., 87(3), 1322-1330(2000) https://doi.org/10.1063/1.372017
  12. Lucovsky, G., Manitini, M. J., Srivastava, J. K. and Irene, E. A., "Low-Temperature Growth of Silicon Dioxide Films: A Study of Chemical Bonding by Ellipsometry and Infrared Spectroscopy," J. Vac. Sci. Technol. B., 5(2), 530-537(1987) https://doi.org/10.1116/1.583944
  13. Carl, D. A., Hess, D. W. and Lieberman, M. A., "Oxidation of Silicon in An Electron Cyclotron Resonance Oxygen Plasma: Kinetics, Physicochemical, and Electrical Properties," J. Vac. Sci. Technol. A., 8(3), 2924-2930(1990) https://doi.org/10.1116/1.576607
  14. Shufflebotham, P. K., Thomson, D. J. and Card, H. C., "Behavior of Downstream Plasmas Generated in a Microwave Plasma Chemical-Vapor Deposition Reactor," J. Appl. Phys., 64(9), 4398-4403(1988) https://doi.org/10.1063/1.342467
  15. Chau, T. T. and Kao, K. C., "Optical Emission Spectra of Microwave Oxygen Plasma and Fabrication of $SiO_2$ Films," J. Vac. Sci. Technol. B., 14(1), 527-532(1996) https://doi.org/10.1116/1.588424
  16. Coleman, W. J., "Evolution of Optical Thin Films by Sputtering," Appl. Opt., 13(4), 946-951(1974) https://doi.org/10.1364/AO.13.000946
  17. Raider, S. I. and Flitsch, "X-Ray Photoelectron Spectroscopy of $SiO_2$-Si Interfacial Regions: Ultrathin Oxide Film," IBM J. Res. Dev., 22(3), 294-303(1978) https://doi.org/10.1147/rd.223.0294