DOI QR코드

DOI QR Code

Antifungal Activity of the Quercus Mongolica Extracts Against Botrytis cinerea

신갈나무로부터 유래된 추출물의 Botrytis cinerea 균주에 대한 항균활성

  • Yeo, Hee Dong (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Lee, Hyung Chul (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Lim, Bu Kug (Yulim Hightech. co) ;
  • Kim, Hee Kyu (Department of Applied Biology & Environmental Sciences, Gyeongsang National University) ;
  • Choi, Myung Suk (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Yang, Jae-Kyung (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University)
  • 여희동 (경상대학교 환경산림과학부, 농업생명과학연구원) ;
  • 이형철 (경상대학교 환경산림과학부, 농업생명과학연구원) ;
  • 임부국 ((주)유림하이텍) ;
  • 김희규 (경상대학교 응용생물환경학전공) ;
  • 최명석 (경상대학교 환경산림과학부, 농업생명과학연구원) ;
  • 양재경 (경상대학교 환경산림과학부, 농업생명과학연구원)
  • Received : 2007.08.07
  • Accepted : 2007.10.25
  • Published : 2008.01.25

Abstract

The aim of this study was to attempt the efficacy of antifungal activity of the wood extracts against Botrytis grey mold. Wood chip derived from Quercus mongolica was obtain from steam explosion process and extracted by hot water and methanol and ethanol. The conidial germination was maximum growth with the application temperature for 20 and $25^{\circ}C$. In pH test, we observed the maximum growth in pH 5.0 and 7.0. Antifungal activity was the best in the hot water extractives against Botrytis cinerea. The separation of the antifungal substances was performed using a silica-gel column (n-hexane : chloroform : ethyl acetate : formic acid = 12 : 17 : 8 : 0.2, v/v/v/v), TLC and UV-Spectrophotometer, and isolated 6 fraction group. The result of antifungal activity in 6 fraction group, fraction group I and fraction group II were the highest antifungal activity against grey mold with the present study. Three peaks in fraction group I and II were detected by HPLC and this compounds were suppose to effective of antifungal activity.

목질자원으로부터 Botrytis속 곰팡이병에 대하여 항균활성을 나타내는 추출물을 탐색하고자 본 연구는 시도되었다. 신갈나무를 고압 전처리하고 이로부터 열수, 메탄올, 에탄올을 이용하여 목질 추출물을 획득하였다. Botrytis속 곰팡이 3종은 $20^{\circ}C$$25^{\circ}C$의 생장온도에서 최적 생장을 하였으며 pH 5.0과 7.0에서 가장 양호한 균사 생장을 나타냈다. 열수 추출물이 Botrytis속에 대하여 가장 우수한 항균활성을 나타내는 것을 확인하였다. 열수추출물로부터 항균물질을 분리하기 위하여 n-hexane : chloroform : ethyl acetate : formic acid (12 : 17 : 8 : 0.2, v/v/v/v)를 용제로 하는 silica-gel column chromatography와 TLC를 사용하였으며, 3종 추출물들은 HPLC 분석을 통하여 화합물을 확인하였으며 UV Spectrophotometer를 이용하여 열수 추출물로부터 6개의 fraction group을 분리 하였다. 6개의 fraction group의 항균활성 test결과, fraction group I과 II는 Botrytis cinerea에 대하여 가장 높은 항균활성을 나타냈다. Fraction group의 HPLC 분석결과, 3개의 유효물질을 확인하였으며 이 3가지 물질이 항균활성에 영향을 미친다고 추측된다.

Keywords

Acknowledgement

Supported by : 농림부

References

  1. Beever, R. E. and L. Parkes. 1993. Mating behaviour and genetics of fungicide resistance of Botrytis cinerea in New Zealand. New Zealand J. Crop & Horti. Sci. 21: 303-310. https://doi.org/10.1080/01140671.1993.9513786
  2. Byun, H. J. and S. J. Choi. 2003. Suppression of Post-harvest grey mold rot incidence in strawberry by field application of hydrogen peroxide. J. Kor. Soc. Hort. Sci. 44(6): 859-862.
  3. Daulagala, E., G. W. Tsomlexoglou, L. A. Gooday, G. B. Seddon, and E. J. Allan. 2003. Molecular detection and b-glucuronidase expression of gusmarked Bacillus subtilis L-form bacteria in developing Chinese cabbage seedlings. Journal of Applied Microbiology. 95(2): 218-224. https://doi.org/10.1046/j.1365-2672.2003.01963.x
  4. Elad, Y., N. E. Malathrakist, and A. J. Dik. 1996. Biological control of Botrytis-incited diseases and powdery mildews in greenhouse crops. Crop Protection. 1(3): 229-240.
  5. Faretra, F. and S. Pollastro. 1993. Genetics of sexual compatibility and resistance to benzimidazole and dicarboximide fungicides in isolates of Botryotinia fuckeliana from nine countries. Plant Pathology. 42: 48-52. https://doi.org/10.1111/j.1365-3059.1993.tb02933.x
  6. Hmamouchi, M., C. Bouchraa, M. Achourib, and L. M. Idrissi Hassanic. 2003. Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr. Journal of thnopharmacology. 89(1): 165-169. https://doi.org/10.1016/S0378-8741(03)00275-7
  7. Kang, J. S., O. H. Jhee, J. W. Hong, A. S. Om, M. H. Lee, W. S. Lee, L. M. Shaw, and J. W. Lee. 2005. Direct determination of verapamil in rat plasma by coupled column microbore-HPLC method. Journal of Pharmaceutical and Biomedical Analysis. 37: 405-410. https://doi.org/10.1016/j.jpba.2004.11.003
  8. Kim, J. Y., E. A. Bae, M. J. Han, and D. H. Kim. 1999. Inhibitiory activity of Bacillus licheniformis AJ on the growth of diarrheal pathogens. J. Apple. Pharm. 7: 385-389.
  9. Kim, M. Y., Y. G. Kim, T. H. Kim, J. S. Jo, and J. K. Yang. 2000. Antimicrobial activity and antioxidative activity in the extractives of Quercus dentata Thunberg. Mokchae Konghak. 28(3): 42-51.
  10. Koo, H. M., S. j. An, and H. C. Shim. 2006. Effect of mepanipyrim on the resistant isolates of gray mold fungus, Botrytis cinerea to the fungicides of benzimidazole and dicarboximide. J. Korean Soc. Appl. Biol. Chem. 49(4): 259-265.
  11. Lee, B. W. and D. H. Shin. 1991. Screening of Natural Antimicrobial Plant Extract on food Spoilage Microorganisms. Korea J. Food Sci. Technol. 23(2): 352-379.
  12. Lee, H. J., S. S. Lee, and D. H. Choi. 2003. Studies on biological activity of wood extractives-Antimicrobial and antioxidative activities of extractive from the heart wood of Prunus sargentii. Kor. Mokchae Konghak. 31(4): 16-23.
  13. Min, K. H. 1998. Antifungal activity of the extracts of Zanthoxylum schinfolium sieb. et zucc. against dermatophytes. Mokchae Konghak. 26(4): 78-85.
  14. Nelson, M. E. and M. L. Powelson. 1988. Biological control of gray mold of snap beans by Trichoderma hamatum. Plant Dis. 72: 727-729. https://doi.org/10.1094/PD-72-0727
  15. Nikos, G. T. and C. D. Economakis. 2007. Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innovative Food Science and Emerging Technologies. 8: 253-258. https://doi.org/10.1016/j.ifset.2007.01.002
  16. Park, S. M., H. J. Jung, and S. H. Yeo. 2005. Antigungal activity of extract from Xanthium strumarium L. against plant pathogenous fungi. J. Life. Sci. 15: 692-695. https://doi.org/10.5352/JLS.2005.15.5.692
  17. Park, Y. K., H. J. Lee, S. S. Lee, D. H. Choi, W. H. Yeo, and J. S. Oh. 2001. Studies on biological activity of wood extractives - Antifungal activity of isoflavonoids from Sopbora japonica. Mokchae Konghak. 29(4): 89-96.
  18. Rosslenbroich, H. J. and S. Dietrich. 2000. Botrytis cinerea-history of chemical control and novel fungicides for its management. Crop Protection. 19(8-10): 557-561. https://doi.org/10.1016/S0261-2194(00)00072-7
  19. Sansone, G., I. Rezza, V. Calvente, D. Benuzzi, and M. I. Sanz de Tosetti. 2005. Control of Botrytis cinerea strains resistant to iprodione in apple with rhodotorulic acid and yeasts. Postharvest Biology and Technology. 35: 245-251. https://doi.org/10.1016/j.postharvbio.2004.09.005
  20. Talma, K., Y. Elad, and H. Yunis. 1989. Resistance to diethofencarb (NPC) in benomyl-resistant field isolates of Botrytis cinerea. Plant Pathology. 38(1): 86. https://doi.org/10.1111/j.1365-3059.1989.tb01431.x
  21. Zhentian, L., j. Jervis, and R. F. Helm. 1999. C-Glycosidic ellagitannins from white oak heartwood and callus tissues. Phytochemistry. 51: 751-756. https://doi.org/10.1016/S0031-9422(99)00075-8