Synthesis of Titanium Dioxides by Microemulsion Method and Their Photocatalytic Degradation of p-Nitrophenol

마이크로에멀젼법에 의한 이산화티탄의 합성 및 p-Nitrophenol의 광촉매 분해반응

  • Jung, Won Young (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Han, Yeon Hee (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Lee, Gun-Dae (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Park, Seong Soo (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Hong, Seong-Soo (Division of Applied Chemical Engineering, Pukyong National University)
  • 정원영 (부경대학교 응용화학공학부) ;
  • 한연희 (부경대학교 응용화학공학부) ;
  • 이근대 (부경대학교 응용화학공학부) ;
  • 박성수 (부경대학교 응용화학공학부) ;
  • 홍성수 (부경대학교 응용화학공학부)
  • Received : 2008.05.02
  • Accepted : 2008.05.19
  • Published : 2008.06.10

Abstract

Titania nanoparticles were prepared by controlled hydrolysis of titanium tetraisopropoxide (TTIP) in water-in-oil (W/O) and microemulsion stabilized with a nonionic surfactant, N P-10 (Polyoxyethylene Nonylphenol Ether: $C_9H_{19}C_6H_4(OCH_2CH_2)_{10}OH$)). The nanosized particles prepared in W/O microemulsion were characterized by FT-IR, TEM, XRD, TGA, and DTA. In addition, the photocatalytic degradation of p-nitrophenol has been studied by using a batch reactor in the presence of UV light in order to compare the photocatalytic activity of prepared nanosized titania. The nanaosized titania particles calcined at $300{\sim}600^{\circ}C$ showed an anatase structure, but it transformed to a rutile phase above $700^{\circ}C$ of calacination temperature. With an increase of $W_o$ ratio, the crystallite size increased but photocalytic activity decreased. The titania synthesized at $W_o=5$, R = 2, and calcined at $400{\sim}500^{\circ}C$ showed the highest activity on the photocatalytic degradation of p-nitrophenol.

비이온성의 N P-10 (Polyoxyethylene Nonylphenol Ether: $C_9H_{19}C_6H_4(OCH_2CH_2)_{10}OH$) 계면활성제를 사용하여 나노크기의 $TiO_2$를 제조하였으며, TGA-DTA TEM, XRD, FT-IR 등을 사용하여 마이크로에멀젼을 이용한 나노입자 제조시 $W_o$ ($H_2O/AOT$)비에 따른 입자의 크기 및 결정성 등 물리적 성질을 조사하였다. 또한 제조된 $TiO_2$ 나노입자의 광촉매적 특성을 알아보기 위해 회분식 반응장치를 이용하여 p-nitrophenol의 광분해반응의 활성을 조사하였다. 제조된 $TiO_2$ 나노입자는 $300{\sim}600^{\circ}C$의 소성온도 범위에서 anatase 구조가 형성되었으며, 소성온도 $700^{\circ}C$에서 anatase 구조에서 rutile 구조로 전이되기 시작하였다. 입자크기는 $W_o$ 비가 증가함에 따라 증가하였고, 반면에 p-nitrophenol의 광분해반응에서 반응성은 감소하였다. 또한 $400{\sim}500^{\circ}C$에서 소성된 $TiO_2$ 촉매가 순수한 anatase 구조를 가지며 가장 높은 p-nitrophenol 분해활성을 보여주었다.

Keywords

Acknowledgement

Supported by : 산업자원부

References

  1. C. Suryanyana and F. H. Froes, Metall. Trans., 23A, 1071 (1992)
  2. A. P. Alivisatos, MRS Bull., Aug., 23 (1995)
  3. W.-I. Chang, S.-W. Kang, and K.-R. Lee, J. Korean Ceram. Soc., 35, 594 (1998)
  4. H. Herrig and R. Hempelmann, Mater. Letters, 27, 287 (1996) https://doi.org/10.1016/0167-577X(96)00011-0
  5. L. Palmisano, V. Augugliaro, M. Schiavello, and A. Sclafani, J. Mol. Catal., 56, 284 (1989) https://doi.org/10.1016/0304-5102(89)80192-0
  6. A. Sclafani, L. Palmisano, and M. Schiavello, J. Phys. Chem., 94, 829 (1990) https://doi.org/10.1021/j100365a058
  7. B. D. Cullity, Elements of X-Ray Diffraction. Adison-Wesley, Reading, MA (1978)
  8. M. S. Lee, G. D. Lee, C. S. Ju, K. T Lim, and S. S. Hong, J. Korean Ind. Eng. Chem., 13, 216 (2002)
  9. L. Palmisano, V. Augugliaro, M. Schiavello, and A. Sclafani, J. Mol. Catal., 56, 284 (1989) https://doi.org/10.1016/0304-5102(89)80192-0
  10. A. Sclafani, L. Palmisano, and M. Schiavello, J. Phys. Chem., 94, 829 (1990) https://doi.org/10.1021/j100365a058
  11. P. N. K. Kumar, Ph. D. Thesis, University of Twente, 7500 AE Enschede, The Netherlands (1993)
  12. V. Chhabra, V. Pillai, B. K. Mishra, A. Morrone, and D. O. Shah, Langmuir, 11, 33 (1995)
  13. A. Larbot, J. A. Alary, J. P. Fabre, C. Guizard, and L. Cot, Better Ceramics Through Chemistry II, 659 (1986)
  14. M. Primet, P. Pichat, and M. V. Mathieu, J. Phys. Chem., 75, 1221 (1971) https://doi.org/10.1021/j100679a008
  15. T. Loepz, R. Gomez, E. Sanchez, F. Tzompantzi, and L. Vera, J. Sol-Gel Sci. Technol., 22, 99 (2001) https://doi.org/10.1023/A:1011272521955
  16. K. Osseo-Asare and F. J. Arriagada, in Better Ceramics Through Chemistry III, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Materials Research Society) (1988)
  17. P. D. I. Fletcher, A. M. Howe, and B. H. Robinson, J. Chem. Soc., Faraday Trans. 183, 985 (1987)
  18. J. H. Fendler, Chem. Rev., 87, 887 (1987)
  19. P. Barnickel, A. Wokaun, W. Sayer, and H.-F. Eicke, J. Colloid Interface Sci., 148, 80 (1991) https://doi.org/10.1016/0021-9797(92)90116-4
  20. K. Wolf, A. Yazdani, and P. Yates, J. Air Waste Manage. Assoc., 41, 1055 (1991) https://doi.org/10.1080/10473289.1991.10466899
  21. C. S. Turchi and D. F. Ollis, J. Catal., 122, 178 (1990) https://doi.org/10.1016/0021-9517(90)90269-P