DOI QR코드

DOI QR Code

Tensile, Thermal and Morphological Properties of Ballmilled Clay/Wood Flour Filled Polypropylene Nanocomposites

  • Lee, Sun-Young (Division of Environmental Material Engineering, Department of Forest Products Korea Forest Research Institute) ;
  • Kang, In-Aeh (Division of Environmental Material Engineering, Department of Forest Products Korea Forest Research Institute) ;
  • Chun, Sang-Jin (Department of Chemical Engineering, University of Seoul)
  • 발행 : 2008.06.30

초록

Nanocomposites with polypropylene/clay/wood flour were prepared by melt blending and injection molding. Thermal, mechanical and morphological properties were characterized. The addition of ballmilled clay, compatibilizer and wood flour significantly improved the thermal stability of the hybrids. The tensile modulus and strength of most hybrids was highly increased with the increased loading of clay, maleated polypropylene (MAPP) and wood flour (WF), compared to the PP/WF hybrids. The tensile modulus and strength of most hybrids were highly increased with the increased loading of ballmilled clay, MAPP and wood flour, compared to the hybrids with PP/WF. The transmission electron microscopy (TEM) photomicrographs illustrated the intercalated and partially exfoliated structures of the hybrids with ballmilled clay, MAPP and wood flour.

키워드

참고문헌

  1. S. Y. Lee, H. S. Yang, H. J. Kim, C .S. Jeong, B. S. Lim, and J. N. Lee, Creep behavior and manufacturing parameters of wood flourfilled polypropulene composites, Compos. Struct., 65, 459 (2004) https://doi.org/10.1016/j.compstruct.2003.12.007
  2. P. V. Joseph , K. Joseph, and S. Thomas, Effect of processing variables on the mechanical properties of sisal-fiberreinforced polypropylene composites, Compos. Sci. Technol., 59, 1625 (1999) https://doi.org/10.1016/S0266-3538(99)00024-X
  3. J. Z. Lu, Q. Wu, H. S. McNabb Jr., Chemical coupling in wood fiber and polymer composition: a review of coupling agents and treatments, Wood Fiber Sci., 3(7), 434 (2000)
  4. C. Clemons, Wood-plastic composites in the United States: the interfacing of two industries, Forest Products J., 52(6), 10 (2002)
  5. T. J. Pinnavaia, and G. W. Beall, Polymer-clay nanocomposites, John Wiley & Sons Ltd, West Sussex (2000)
  6. P. M. Ajayan, L. S. Schadler, and P. V. Braun, Nanocomposite Science and Technology, Wiley-VCH, Weinheim (2003)
  7. S. U. Lee, I. H. Oh, J. H. Lee, K. Y. Choi, and S. G. Lee, Preparation and characterization of polyethylene/ Montmorillonite Nanocomposites, Polym. (Korea), 3, 271 (2005)
  8. S. G. Lee, J. C. Won, J. H. Lee, and K. Y. Choi, Flame retardancy of p o l y p r o p l y n e n e -Mo n t m o r i l l o n i t e nanocomposites, Polym. (Korea), 3, 248 (2005)
  9. J. H. Park. A study on the preparation of the polymer/clay nanocomposites by solution, melt and in-situ intercalation, Ph.D. dissertation, Korea University. p. 151
  10. P. J. Yoon, T. D. Fornes, and D. R. Paul, Thermal expansion behavior of nylon 6 nanocomposites, Polym., 43, 6727 (2002) https://doi.org/10.1016/S0032-3861(02)00638-9
  11. K. A. Carrado, L. Xu, S. Seifert, R. Csencsits, and C. A. Bllmquist, Polymerclay nanocomposites derived polymersilicate gels, Edited by Pinnavaia T.J.and Beall G.W., John Wiley & Sons Ltd, 47 (2000)
  12. A. Sorrentino, G. Gorrasi, M. Tortora, V. Vittiria, U. Costantino, F. Marmottino, and F. Padella, Incorporation of Mg-Al hydrotalcite into a biodegradable Poly($\varepsilon$ -caprolactone) by high energy ball milling, Polym. 46, 1601 (2005) https://doi.org/10.1016/j.polymer.2004.12.018
  13. H. Qin, S. Zhang, C. Zhao, M. Feng, M. Yang, Z. Shu, and S. Yang, Thermal stability and flammability of polypropylene/montmorillonite composites, Polym. Degrad. Stabil., 85, 807 (2004) https://doi.org/10.1016/j.polymdegradstab.2004.03.014
  14. S. Y. Lee, I. A. Kang, G. H. Doh, W. J. Kim, J. S. Kim, H. G. Yoon, and Q. Wu, Themal, mechanical and thermal properties of polypropylene/clay/wood flour nanocomposites, eXPRESS Polym. Lett., 2(2), 78 (2008) https://doi.org/10.3144/expresspolymlett.2008.11