3차원 지하수 유동과 반응성용질이동 모델을 활용한 우라늄 흡착 및 이동에 관한 개념 모델링

Conceptual Modeling on the Adsorption and Transport of Uranium Using 3-D Groundwater Flow and Reactive Transport Models

  • 발행 : 2008.12.28

초록

본 연구에서는 지구화학 모델을 활용하여 지하수 환경에서의 우라늄의 존재 형태, 흡착 및 이동 특성을 모사해 보았다. 흡착에 의한 우라늄의 지연 이동을 효과적으로 모사하기 위하여 3차원 지하수 유동 모델과 반응성 용질 이동 모델을 활용하였다. 모사 결과, $pCO_2=10^{-3.6}$조건에서 대부분의 우라늄 흡착(최대 99.5%)은 pH 5.5와 띠에서 발생하였다. $pCO_2$$10^{-2.5}$인 경우 우라늄이 대부분 흡착되는 pH범위는 6에서 7사이로 매우 좁았으며, 반면 $pCO_2=10^{-4.5}$인 경우에는 흡착되는 pH가 범위가 상대적으로 넓어 pH 5.5에서 8.5사이에서 대부분 흡착되었다. 음이온 화합물을 고려한 경우에는 pH 6 이하에서는 불소착물의 형성에 의해 우라늄 흡착이 감소하였다. 본 연구를 통하여, 우라늄 이동이 pH, $pCO_2$ 및 음이온의 종류와 농도 등 지하수의 지화학적 조건에 의해 상당히 영향을 받음을 알 수 있었다. 향후 여러 부지 조사 및 평가와 관련하여 우라늄 및 기타 유해성 화합물의 환경 영향을 예측하는데 있어 지구화학 모델이 중요한 도구로 활용되어야 할 것이다.

In this study, the speciation, adsorption, and transport of uranium in groundwater environments were simulated using geochemical models. The retarded transport of uranium by adsortption was effectively simulated using 3-D groundwater flow and reactive transport models. The results showed that most uranium was adsorbed(up to 99.5%) in a neutral pH(5.5$pCO_2(10^{-3.6}atm)$ condition. Under the higher $pCO_2(10^{-2.5}atm)$ condition, however, the pH range where most uranium was absorbed was narrow from 6 to 7. Under very low $pCO_2(10^{-4.5}atm)$ condition, uranium was mostly absorbed in the relatively wide pH range between 5.5 and 8.5. In the model including anion complexes, the uranium adsorption decreased by fluoride complex below the pH of 6. The results of this study showed that uranium transport is strongly affected by hydrochemical conditions such as pH, $pCO_2$, and the kinds and concentrations of anions($Cl^-$, ${SO_4}^{2-}$, $F^-$). Therefore, geochemical models should be used as an important tool to predict the environmental impacts of uranium and other hazardous compounds in many site investigations.

키워드

참고문헌

  1. Abdelouas, A., Lutze, W. and Nuttall, H.E. (1999) Uranium contamination in the subsurface: characterization and remediation. In: Uranium: Mineralogy, Geochemistry and the Environment, Review in Mineralogy Series, Mineralogical Society of America, Vol. 38, p. 433-473
  2. Agüero, A. (2005) Performance assessment model development and parameter acquisition for analysis of the transport of natural radionuclides in a Mediterranean watershed. Sci. Total Environ., v. 348, p. 32-50 https://doi.org/10.1016/j.scitotenv.2004.12.077
  3. Allison, J.D., Brown, D.S. and Novo-Gradac, K.J. (1991) MINTEQA2/PRODEFA2: A geochemical assessment model for environmental systems, Version 3.0 Manual. US Environmental Protection Agency EPA/600/3- 91/021
  4. Barnett, M.O., Jardine, P.M. and Brooks, S.C. (2002) U(VI) adsorption to heterogeneous subsurface media: application of a surface complexation model. Environ. Sci. Technol., v. 36, p. 937-942 https://doi.org/10.1021/es010846i
  5. Brady, P.V. and Bethke, C.M. (2000) Beyond the Kd approach. Ground Water, v. 38, p. 321-322
  6. Davis, J.A., Coston, J.A., Kent, D.B. and Fuller, C.C. (1998) Application of the surface complexation concept to complex mineral assemblages. Environ. Sci. Technol., v. 32, p. 2820-2828 https://doi.org/10.1021/es980312q
  7. Davis, J.A., Meece, D.E., Kohler, M. and Curtis, G.P. (2004) Approaches to surface complexation modeling of uranium(VI) adsorption on aquifer sediments. Geochim. Cosmochim. Acta, v. 68, p. 3621-3641 https://doi.org/10.1016/j.gca.2004.03.003
  8. Davis, J.A., Curtis, G.P., Wilkins, M.J., Kohler, M., Fox, P., Naftz, D.L. and Lloyd, J.R. (2006) Processes affecting transport of uranium in a suboxic aquifer. Phys. Chem. Earth, v. 31, p. 548-555 https://doi.org/10.1016/j.pce.2006.04.005
  9. Dong, W. and Brooks, S.C. (2006) Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals($Mg^{2+}$, ($Ca^{2+}$, ($Sr^{2+}$ , and ($Ba^{2+}$) using anion exchange method. Environ. Sci. Technol., v. 40, p. 4689-4695 https://doi.org/10.1021/es0606327
  10. Dzombak, D.A. and Morel, F.M. (1990) Surface complexation modeling: Hydrous ferric oxides. John Wiley and Sons, New York, NY
  11. Guillaumont, R. and Mompean, F.J. (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium, Chemical Thermodynamics 2, Elsevier, Amsterdam
  12. Granbow, B., Smailos, E., Geckeis, H., Muller, R. and Hentschel, H. (1996) Sorption and reduction of uranium( VI) on iron corrosion products under reducing saline conditions. Radiochim. Acta, v. 74, p. 149-154
  13. Hsi, C.D. and Langmuir, D. (1985) Adsorption of uranyl onto ferric oxyhydroxides: Application of the surface complexation site-binding model. Geochim. Cosmochim. Acta, v. 49, p. 1931-1941 https://doi.org/10.1016/0016-7037(85)90088-2
  14. Katsoyiannis, I.A., Althoff, H.W., Bartel, H. and Jekel, M. (2006) The effect of groundwater composition on uranium( VI) sorption onto bacteriogenic iron oxides. Water Res., v. 40, p. 3646-3652 https://doi.org/10.1016/j.watres.2006.06.032
  15. Kipp, K.L. (1997) Guide to the revised heat and solute transport simulator HST3D - Version 2. US Geological Survey Water-Resoures Investigations Report 97-4157
  16. Kohler, M., Curtis, G.P., Kent, D.B. and Davis, J.A. (1996) Experimental investigation and modeling of uranium( VI) transport under variable chemical conditions. Water Resour. Res., v. 32, p. 3539-3551 https://doi.org/10.1029/95WR02815
  17. Langmuir, D. (1997) Aqueous Environmental Geochemistry. Prentice-Hall, Inc. Upper Saddle River, NJ
  18. Morrison, S.J. and Cahn, L.S. (1991) Mineralogical residence of alpha-emitting contamination and implications for mobilization from uranium mill tailings. Jour. Contam. Hydrol., v. 8, p. 1-21 https://doi.org/10.1016/0169-7722(91)90006-M
  19. Pabalan, R.T. and Turner, D.R. (1997) Uranium(6+) sorption on montmorillonite: experimental and surface complexation modeling study. Aquatic Geochem., v. 2, p. 203-226 https://doi.org/10.1007/BF00119855
  20. Parkhurst, D.L. and Appelo, C.A.J. (2001) User's guide to PHREEQC (version 2). A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Water-Resources Investigations Reports, pp. 99-4259
  21. Parkhurst, D.L., Kipp, K.L., Engesgaard, P. and Charlton, S.R. (2004) PHAST - A program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions. US Geological Survey Techniques and Methods 6-A8
  22. Payne, T.E. and Airey, P.L. (2006) Radionuclide migration at the Koongarra uranium deposit, Northern Australia- Lessons from the Alligator Rivers analogue project. Phys. Chem. Earth, v. 31, p. 572-586 https://doi.org/10.1016/j.pce.2006.04.008
  23. Prikryl, J.D., Jain, A., Turner, D.R. and Pabalan, R.T. (2001) Uranium sorption behavior on silicate mineral mixtures. Jour. Contam. Hydrol., v. 47, p. 241-253 https://doi.org/10.1016/S0169-7722(00)00153-4
  24. Riley, R.G., Zachara, J.M. and Wobber, F.J. (1992) Chemical contaminants of DOE lands and selection of contaminant mixtures for subsurface science research. Report DOE/ER-0547T. U.S. Department of Energy
  25. Turner, G.D., Zachara, J.M., McKinley, J.P. and Smith, S.C. (1996) Surface-charge properties and $UO_2^{2+}$ adsorption of a subsurface smectite. Geochim. Cosmochim. Acta, v. 60, p. 3399-3414 https://doi.org/10.1016/0016-7037(96)00169-X
  26. Waite, T.D., Davis, J.A., Payne, T.E., Waychunas, G.A. and Xu, N. (1994) Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim. Cosmochim. Acta, v. 58, p. 5465-5478 https://doi.org/10.1016/0016-7037(94)90243-7
  27. Wazne, M., Korfiatis, G.P. and Meng, X. (2003) Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxides. Environ. Sci. Technol., v. 37, p. 3619-3624 https://doi.org/10.1021/es034166m
  28. Winston, R.B. (2006) GoPhast: A graphical user interface for PHAST. US Geological Survey Techniques and Methods 6-A20
  29. Zachara, J., Kelly, S., Brown, C., Liu, C., Christensen, J., McKinley, J., Davis, J.A., Serne, J., Dresel, E. and Um, W. (2007) A site-wide perspective on uranium geochemistry at the Hanford site. Pacific Northwest National Laboratory Richland, PNNL-17031