• 제목/요약/키워드: 우라늄 이동 및 흡착

검색결과 7건 처리시간 0.025초

3차원 지하수 유동과 반응성용질이동 모델을 활용한 우라늄 흡착 및 이동에 관한 개념 모델링 (Conceptual Modeling on the Adsorption and Transport of Uranium Using 3-D Groundwater Flow and Reactive Transport Models)

  • 최병영;고용권;윤성택;김건영
    • 자원환경지질
    • /
    • 제41권6호
    • /
    • pp.719-729
    • /
    • 2008
  • 본 연구에서는 지구화학 모델을 활용하여 지하수 환경에서의 우라늄의 존재 형태, 흡착 및 이동 특성을 모사해 보았다. 흡착에 의한 우라늄의 지연 이동을 효과적으로 모사하기 위하여 3차원 지하수 유동 모델과 반응성 용질 이동 모델을 활용하였다. 모사 결과, $pCO_2=10^{-3.6}$조건에서 대부분의 우라늄 흡착(최대 99.5%)은 pH 5.5와 띠에서 발생하였다. $pCO_2$$10^{-2.5}$인 경우 우라늄이 대부분 흡착되는 pH범위는 6에서 7사이로 매우 좁았으며, 반면 $pCO_2=10^{-4.5}$인 경우에는 흡착되는 pH가 범위가 상대적으로 넓어 pH 5.5에서 8.5사이에서 대부분 흡착되었다. 음이온 화합물을 고려한 경우에는 pH 6 이하에서는 불소착물의 형성에 의해 우라늄 흡착이 감소하였다. 본 연구를 통하여, 우라늄 이동이 pH, $pCO_2$ 및 음이온의 종류와 농도 등 지하수의 지화학적 조건에 의해 상당히 영향을 받음을 알 수 있었다. 향후 여러 부지 조사 및 평가와 관련하여 우라늄 및 기타 유해성 화합물의 환경 영향을 예측하는데 있어 지구화학 모델이 중요한 도구로 활용되어야 할 것이다.

스와넬라균(Shewanella p.)에 의한 용존우라늄 제거 특성 및 방사성폐기물 처분에의 응용 (Removal Characteristics of Dissolved Uranium by Shewanella p. and Application to Radioactive Waste Disposal)

  • 이승엽;백민훈;송준규
    • 자원환경지질
    • /
    • 제42권5호
    • /
    • pp.471-477
    • /
    • 2009
  • 물속에 우라닐이온(${UO_2}^{2+}$) 형태로 존재하는 산화우라늄을 철환원세균인 스와넬라균(Shewanella p.)을 이용하여 제거하는 실험을 수행하였다. 용액상의 우라늄 초기농도는 $50{\mu}M$ 이었으며 미생물과의 반응에 의해 점차 그 농도가 감소하였고, 약 2주 후에 거의 대부분의 우라늄이 제거되었다. 우라늄이 제거된 기작은 대부분 미생물 표면에 대한 흡착, 침전 및 광물화에 의한 것이었다. 투과전자현미경으로 관찰한 결과로는 미생물 표면에 흡착되어 점차 결정화되어가는 우라늄이 큰 광물로 성장하고 여러 미생물개체 및 유기분비물과의 결합을 통해 그 크기가 수 ${\mu}m$ 이상으로 커져가는 것을 확인하였다. 이러한 미생물에 의한 우라늄 광물의 성장 및 결합은 방사성폐기물처분장의 우라늄 거동에 큰 영향을 끼칠 수 있으며, 특별히 본 실험에서 관찰한 생지화학적인 금속환원미생물의 역할에 의해 지하 우라늄의 이동이 상당히 지연되는 효과를 거둘 수 있을 것으로 사료된다.

박테리아 세포외 중합체(EPS)에 의한 비소, 크롬, 우라늄의 흡착 및 산화상태 변화 (Adsorption and Redox State Alteration of Arsenic, Chromium and Uranium by Bacterial Extracellular Polymeric Substances (EPS))

  • 박현성;고명수;이종운
    • 자원환경지질
    • /
    • 제43권3호
    • /
    • pp.223-233
    • /
    • 2010
  • 세포외 중합체(EPS)의 존재 유무에 따라 Pseudomonas aeruginosa가 용존 비소, 크롬, 우라늄의 흡착 및 산화상태의 변화에 미치는 영향을 회분식 실험을 통해 조사하였다. 배양한 미생물의 표면을 세척한 것과 세척하지 않은 것으로 구분하여 무영양 상태에서 1.1 mg/L의 As(V)와 Cr(VI), 0.5 mg/L의 U(VI)와 반응시키며 시간에 따라 각각의 총 용존 함량과 산화상태 변화를 측정하였다. As(V)의 경우 EPS 존재 여부와 관계없이 흡착은 발생하지 않았으나 EPS가 보존된 박테리아는 As(V)의 약 60%를 As(III)로 환원하였다. 표면을 세척하지 않은 박테리아는 총 용존 크롬의 45%를 제거하였으며 잔류된 용존 크롬의 64%를 Cr(III)로 환원하였다. 우라늄의 경우, 박테리아 표면을 세척하지 않았을 때 U(VI)의 약 80% 이상이 용액으로부터 제거되었다. 이러한 원소 환원은 박테리아가 분비한 EPS 자체의 환원 능력 또는 EPS로부터 보호받아 생육성이 보존된 박테리아의 해독성 환원에 의한 것으로 여겨진다. 이 연구 결과는 자연 환경에서 대부분 바이오필름 상태로 존재하는 미생물이 비소, 크롬, 우라늄의 산화상태 및 이동도 조절에 지대한 영향을 미칠 수도 있음을 의미한다.

벤토나이트 콜로이드로의 우라늄(VI) 수착에 대한 실험적 연구 (An Experimental Study on the Sorption of Uranium(VI) onto a Bentonite Colloid)

  • 백민훈;조원진
    • 방사성폐기물학회지
    • /
    • 제4권3호
    • /
    • pp.235-243
    • /
    • 2006
  • 본 연구에서는 현재 국내에서 고준위 방사성폐기물 처분장의 잠재적인 완충재 물질로 고려되고 있는 경주벤토나이트에서 발생 가능한 벤토나이트 콜로이드로의 우라늄(VI) 수착특성에 대한 실험적 연구를 pH 및 이온강도의 함수로 수행하였다. 경주벤토나이트로부터 분리된 콜로이드는 주로 몬모릴로나이트로 구성되어 있다. 중력여과법을 사용하여 측정한 결과 농도 및 크기는 약 5100 ppm 및 200-450 nm 이었다 우라늄 수착실험에 대한 공시험을 수행하여 수착 반응용기 벽면에 흡착, 침전, 한외여과에 의해 손실된 우라늄 양을 평가하였다. 이러한 과정에 의해 제거된 우라늄의 양은 미량이었다. 그러나 한외여과에 의한 우라늄 손실의 경우 이온강도가 낮은 경우 즉, 0.001 M $NaClO_4$의 경우 한외여과 필터의 표면전하 역전에 의한 양이온 수착 영향으로 인해 매우 높은 핵종 손실을 유발하였다. 벤토나이트 콜로이드에 대한 우라늄(VI)의 수착 분배계수 $K_d$ (또는 의사콜로이드 형성상수)는 PH 및 이온강도에 따라 $10^4{\sim}10^7 mL/g$ 값을 가지며 pH 중성영역인 6.5 근처에서 최대값을 가지는 것으로 나타났다. 벤토나이트에 대한 우라늄(VI)의 수착은 pH, 이온강도, 탄산농도 등과 같은 지화학적 변수들에 의존하는 수용액에서 우라늄화학종과 매우 밀접한 관련이 있다 따라서 벤토나이트 완충재로부터 발생된 벤토나이트 콜로이드는 높은 수착능으로 인해 우라늄(VI)을 의사콜로이드(pseudo-colloid)의 형태로 지질학적 매질을 통해 이동시킬 수 있을 것이다.

  • PDF

양이온 교환능을 갖는 K-Birnessite 콜로이드에 의한 수용성 우라늄(VI) 이온의 흡착 연구 (Sorption of aqueous uranium(VI) ion onto a cation-exchangeable K-birnessite colloid)

  • 강광철;김승수;백민훈;권수한;이석우
    • 분석과학
    • /
    • 제23권6호
    • /
    • pp.566-571
    • /
    • 2010
  • 양이온 교환능력을 갖는 합성 K-birnessite를 이용하여 수용성 우라늄 이온($UO_2^{2+}$)에 대한 흡착 거동을 조사하였다. K-birnessite는 KMnO4 수용액과 염산을 반응시켜 합성하였으며, 합성된 K-birnessite의 구조, 비표면적 및 표면전하 등 물리화학적 특성을 규명하였다. $K^+$ 이온은 층상구조를 갖는 $MnO_2$ 층간에 존재하였으며, BET 비표면적은 $38.30\;m^2/g$이었다. 우라늄 흡착실험 조건인 pH 5.00, 이온세기 0.010M $NaClO_4$에서 측정된 K-birnessite의 표면전하는 $-1.65\;C/m^2$이었다. 우라늄 이온은 K-birnessite 층간의 $K^+$와 이온교환 반응을 통하여 흡착하였으며, 분배계수는 일반적인 이온교환물질과 유사하였다. 본 연구결과는 고준위 방사성 폐기물 지하처분장으로부터 유출될 수 있는 방사성물질의 이동을 저지하는 방법으로 활용될 수 있을 것이다.

한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링 (Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea)

  • 최재훈;박선주;서현수;안현태;이정환;박정훈;윤성택
    • 자원환경지질
    • /
    • 제56권6호
    • /
    • pp.847-870
    • /
    • 2023
  • 고준위 방사성폐기물을 심지층에 안전하게 처분하기 위해서는 방사성 핵종의 장기적 지구화학 거동에 대한 정확한 예측이 요구된다. 이와 관련하여 본 연구에서는 국내 심부 지하수를 대표하는 다섯가지 지화학 환경 조건에서 지화학 모델링을 수행하여 일부 방사성 핵종의 지화학 거동을 예측하였다. 다섯가지 국내 심부 지하수의 지화학 환경은 다음과 같다: 고 TDS 염지하수(G1), 산성 pH의 CO2가 풍부한 지하수(G2), 고 pH 알칼리성 지하수(G3), 황산염이 풍부한 지하수(G4), 묽은(담수) 지하수(G5). 3~12의 pH 범위와 ±0.2V의 산화-환원전위(Eh) 조건에서 일부 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 국내 심부 지하수 내에서의 용해도와 화학종(존재형태)을 예측하였다. 모델링 결과, 용존 상태의 우라늄은 주로 U(IV)로서 중성~알칼리성의 넓은 pH 환경에서 높은 용해도를 보였으며, Eh가 -0.2V인 환원 환경에서도 알칼리 pH 조건에서 높은 용해도를 보였다. 이러한 높은 용해도는 주로 Ca-U-CO3 착물의 형성에 의한 것으로 예측되는데, 이 착물의 활동도(activity)는 국내 심부 지하수 중 주요 단층대를 따라 산출되는 G2와 화강암반에 위치하는 G3에서 높다. 한편, 플루토늄(Pu)의 용해도는 pH에 따라 달라지며, 특히 중성~알칼리성 조건에서 가장 낮은 용해도가 나타난다. 주요 화학종은 Pu(IV)와 Pu(III)이며, 이들은 주로 흡착을 통해 제거될 것으로 추정된다. 그러나 콜로이드에 의한 이동을 고려하면, 이온강도가 낮은 심부 지하수인 G3와 G5 유형에서 콜로이드 형성 및 이동 촉진에 따라 이동성이 증가할 것으로 예상된다. 팔라듐(Pd)은 환원 환경에서는 황화물 침전 반응으로 인해 낮은 용해도를 나타내며, 산화 환경에서는 주로 금속(수)산화물에의 흡착을 통해 Pd(OH)3-, PdCl3(OH)2-, PdCl42- 및 Pd(CO3)22-와 같은 음이온 착물이 제거될 것으로 판단된다. 본 연구는 한국의 심부 지하수 환경에서 방사성 핵종의 운명과 이동에 대한 이해를 높이고, 고준위 방사성 폐기물의 안전한 처분을 위한 전략 개발에 기여할 것으로 기대된다.

Cation Exchange Capacities, Swelling, and Solubility of Clay Minerals in Acidic Solutions : A Literature Review

  • Park, Won Choon
    • 자원환경지질
    • /
    • 제12권1호
    • /
    • pp.41-49
    • /
    • 1979
  • 본문은 광물학 및 습식야금법의 관점에서, 산성용액내의 점토 광물의 물리적 특성과 화학적 특성을 문헌에 의해 검토한 것이다. 점토광물의 몇가지 중요한 특성은 이들이 산성용액내에서 양이온을 교환하고 흡수팽창하며, 이질광물로 분해(incongruent dissolution)하는 능력을 갖는다는 것이다. 여러 점토광물들은 양이온 교환과정으로 금속 이온들을 용액으로부터 흡착할 수 있다. 일반적으로 이들의 양이온 교환능력은 다음 순서로 증가된다. 즉, kaolinite, halloysite, illite, vermiculite, montmorillonite 산성용액내에서는 점토광물들에 의하여 동과 같은 양이온 흡착은 수소와 알미늄에 의해 크게 방해를 받으므로, 우라늄 및 동 등의 금속을 회수하는데는 점토광물이 중용한 요소가 되지 않는다. 그러나, 염기성용액에서는 양이온 흡착(uptake)이 중요하다. 흡수 팽창성은 낮은 pH에서 최소가 된다. 이는 격자 파괴에 기인할 가능성이 많다. 흡수 팽창은 montmorillonite형 점토에서 조절이 되는데 그것은 내부층의 Na 이온이 리튬 과/또는 수산화된 알미늄 이온과 교환을 하기 때문이다. 점토광물에 대한 산의 효과는 다음과 같다. i) 면적 및 다공성이 증가됨에 따라 보다 작은 판상의 집합체로 분리됨 ii) 점토-산 반응은 다음 순서로 일어난다. (ㄱ) 내부층 양이온들의 $H^+$ 치환 (ㄴ) Al, Fe, Mg 등의 팔면체 양이온의 이동. (ㄷ) 사면체 Al 이온들의 이동. 산의 공격반응(attack)은 점토 입자의 가장자리에서부터 시작되어 내부로 계속되며, 수화된 규소겔을 가장 자리에 남긴다. iii) (ㄴ)과 (ㄷ)의 반응속도는 위-일급($pseudo-1^{st}$ order)이며, 이는 산의 농도에 비례한다. 그리고 그 속도는 온도 매 $10^{\circ}C$ 증가에 따라 배가된다. 산에 의한 동이나 우라늄을 제자리에서 용해시키는 경우 고찰할 문제는 다음과 같다. i) 1년 혹은 그 이상의 오랜 작용으로 산의 반응을 받은 점토광물은 규소겔을 남길 것이다. 그런데 이 겔이 용해(leaching)작용을 받고 있는 유용 광물 표면을 덮게 되면 용해에 의한 회수 속도는 실질적으로 감소된다. ii) 0.5% 점토광물과 동을 함유하는 회수 가능한 동광상에 대해 점토-산 반응에 사용될 값의 상승은 동 1파운드당 1.5c이다. (혹은 구리 1파운드당 $H_2SO_4$ 0.93Ibs) 점토광물에 의한 이러한 산의 소모량이 산화동광상에서 동을 추출하는데 경제적 평가의 한 요소가 될 것이다.

  • PDF