Abstract
After scientific verification of the osteointegration of dental implants, the overall efficiency of dental implants has been generally accepted. Thus, implants now play a major role in the clinical treatment of an edentulous mandible, and in the prosthetic maintenance equipment for partial edentulous mandible patients. Yet, for the successful long-term maintenance of implants, careful consideration of the bio-mechanics is needed to ensure that the maximum stress in the mandible as a result of chewing is maintained under a critical value. Accordingly, this study focuses on reducing the maximum stresses in an implanted mandible, especially in the cortical bone. Thus, the stresses in the implant and mandible are analyzed using finite element packages, including I-DEAS and NISA II/DISPLAY III, using a local zooming technique for a concentrated stress analysis. In addition, the von-Mises stress and principal stress in the mandible are both checked to determine the best combination.