DOI QR코드

DOI QR Code

Estimation of Atmospheric Mercury Wet-deposition to Lake So-yang

대기 중 수은의 습식 침적 평가: 소양호를 중심으로

  • Ahn, Myung-Chan (Department of Environmental Science, College of Natural Science, Kangwon National University) ;
  • Han, Young-Ji (Department of Environmental Science, College of Natural Science, Kangwon National University)
  • 안명찬 (강원대학교 자연과학대학 환경과학과) ;
  • 한영지 (강원대학교 자연과학대학 환경과학과)
  • Published : 2008.12.31

Abstract

The important source of the mercury in water-column is the influx of atmosphere mercury, via dry and wet deposition. In this study, wet deposition of mercury was estimated to be $14.56{\mu}g/m^2$ during 15 months at the Lake Soyang, which is a little higher than those observed in the several rural US Mercury Deposition Network (MDN) sites with similar precipitation depth. The mercury concentration in precipitation did not show a positive correlation with atmospheric RGM (reactive gaseous mercury) concentration, while maintaining good correlation with atmospheric $PM_{2.5}$ at Soyang Dam. This result suggests that the contribution of particulate Hg to the total Hg wet deposition should be more significant than that of RGM. In this study, both precipitation depth and precipitation type affected the amount of wet deposition and the concurrent mercury levels in precipitation. There was generally an inverse relationship between precipitation depth and Hg concentration in precipitation. Precipitation type was another factor that exerted controls on the Hg concentration in precipitation. As a result, the highest concentration of Hg was observed in snow, followed by in mixture (snow+rain) and in rain.

Keywords

References

  1. 이정순, 김민영, 김기현, 홍성민, 손장호, 이수철(2007) 장기 간 관측을 통한 황사 현상이 수은의 분포에 미치는 영향 고찰, 한국대기환경학회지, 23(2),169-182 https://doi.org/10.5572/KOSAE.2007.23.2.169
  2. Douglas, T.A., M. Sturm, W.R. Simpson, J.D. Blum, L. Alvarez- Aviles, G.J. Keeler, D.K. Perovich, A. Biswas, and K. Johnson (2008) Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic, Environ. Sci. & Tech., 42(5), 1542-1551 https://doi.org/10.1021/es070502d
  3. Ebert, P., K. Baechmann, G. Frank, and J. Tschiersch (1997) The chemical content of raindrops as a function of drop radius, part III: a new method to measure the mean aerosol particle size of different inorganic species in the atmosphere, Atmos. Environ., 31(2), 247-251 https://doi.org/10.1016/1352-2310(96)00163-X
  4. Fleming, E.J., E.E. Mack, P.G. Green, and D.C. Nelson (2006) Mercury methylation from unexpected sources: molybdate-Inhibited freshwater sediments and an iron-reducing bacterium, Appl. Environ. Microbiol., 72(1), 457-464 https://doi.org/10.1128/AEM.72.1.457-464.2006
  5. Hall, B. (1995) The gas phase oxidation of elemental mercury by ozone, Water, Air, Soil Pollution, 80, 301-315 https://doi.org/10.1007/BF01189680
  6. Hammerschmidt, C.R., W.F. Fitzgerald, C.H. Lamborg, P.H. Balcom, and C.M. Tseng (2006a) Biogeochemical cycling of methylmercury in Lake and Tundra watersheds of Arctic Alaska, Environ. Sci. & Tech., 40(4), 1204-1211 https://doi.org/10.1021/es051322b
  7. Hammerschmidt, C.R. and W.F. Fitzgerald (2006b) Methylmercury in freshwater fish linked to atmospheric mercury deposition, Environ. Sci. & Tech., 40(24), 7764-7770 https://doi.org/10.1021/es061480i
  8. Hintelmann, H., R. Harris, A. Heyes, J.P. Hurley, C.A. Kelly, D.P. Krabbenhoft, S. Lindberg, J.W.M. Rudd, K.J. Scott, and V.L. St.louis (2002) Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study, Environ. Sci. & Tech., 36(23), 5034-5040 https://doi.org/10.1021/es025572t
  9. Keeler, G., G. Glinsorn, and N. Pirrone (1995) Particulate mercury in the atmosphere: Its significance, transport, transformation and sources, Water, Air and Soil Pollution, 80, 159-168 https://doi.org/10.1007/BF01189664
  10. Kerbrat, M., B. Pinzer, T. Huthwelker, H.W. Gaggeler, M. Ammann, and M. Schneebeli (2008) Measuring the specific surface area of snow with X-ray tomography and gas adsorption: comparison and implications for surface smoothness, Atmos. Chem. Phys., 8, 1261-1275 https://doi.org/10.5194/acp-8-1261-2008
  11. Lai, S.O., T.H. Holsen, Y.S. Han, P.P. Hopke, S.M. Yi, P. Blanchard, J.J. Pagano, and M. Milligan (2007) Estimation of mercury loadings to Lake Ontario: Result from the Lake Ontario atmospheric deposition study (LOADS), Atmos. Environ., 41, 8205-8218 https://doi.org/10.1016/j.atmosenv.2007.06.035
  12. Lamborg, C.H., W.F. Fitzgerald, G.M. Vandal, and K.R. Rolfhus (1995) Atmospheric mercury in northern wisconsin: source and species, Water, Air and Soil Pollution, 80, 189-198 https://doi.org/10.1007/BF01189667
  13. Landis, M.S., A.F. Vette, and G.J. Keeler (2002a) Atmospheric mercury in the Lake Michigan Basin: Influence of the Chicago/Gary urban area, Environ. Sci. & Tech., 36, 4508-4517 https://doi.org/10.1021/es011216j
  14. Landis, M.S. and G.J. Keeler (2002b) Atmospheric mercury deposition to Lake Michigan during the Lake Michigan Mass Balance Study, Environ. Sci. & Tech., 36, 4518-4524 https://doi.org/10.1021/es011217b
  15. Lynam, M.M. and G.J. Keeler (2005) Automated speciated mercury measurements in Michigan, Environ. Sci. & Tech., 39, 9253-9262 https://doi.org/10.1021/es040458r
  16. Mason, R.P. and K.A. Sullivan (1997) Mercury in Lake Michi-gan, Environ. Sci. & Tech., 31, 942-947 https://doi.org/10.1021/es960656l
  17. Mitra, S.K., U. Barth, and H.R. Pruppacher (1990) A laboratory study of the efficiency with which aerosol particles are scavenged by snow flakes, Atmos. Environ., 24A, 1247-1254
  18. Miller, N.L. and P.K. Wang (1991) A theoretical determination of the collection rates of aerosol particles by falling ice crystal plates and columns, Atmos. Environ., 25A, 2593
  19. Orihel, D.M., M.J. Paterson, R.A. Bodaly, and H. Hintelmann (2007) Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota, Environ. Sci. & Tech., 41, 4952-4958
  20. Poissant, L. and M. Pilote (1998) Mercury concentrations in single event precipitation in southern Quebec, The Science Of the Total Environment, 213, 65-72 https://doi.org/10.1016/S0048-9697(98)00076-X
  21. Sakata, M. and K. Asakura (2007) Estimating contribution of precipitation scavenging of atmospheric particulate mercury to mercury wet deposition in Japan, Atmos. Environ., 41, 1669-1680 https://doi.org/10.1016/j.atmosenv.2006.10.031
  22. Sanemasa, I. (1975) The solubility of elemental mercury vapor in water, Bulletin of The Chemical Society of Japan, 48(6), 1795-1798 https://doi.org/10.1246/bcsj.48.1795
  23. Seigneur, C., K. Vijayaraghavan, K. Lohman, P. Karamchandani, and C. Scott (2004) Global source attribution for mercury deposition in the United States, Environ. Sci. & Tech., 38, 555-569 https://doi.org/10.1021/es034109t
  24. Sparmacher, H., K. Fulber, and H. Bonka (1993) Below-cloud scavenging of aerosol particles; Particle-bound radionuclides? Experimental, Atmos. Environ., 27A, 605-618
  25. Takahashi, T. (1963) Chemical composition of snow in relation to their crystal shapes, J. Met. Soc. Jpn., 41, 327-336 https://doi.org/10.2151/jmsj1923.41.6_327
  26. U.S. EPA (2001) Mercury Update: Impact in Fish Advisories. U.S. Environmental Protection Agency, Office of Water, 4305. EPA-823-F-01-011
  27. U.S. EPA (2002) Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. U.S. Environmental Protection Agency, Office of Water, 4303. EPA-821-R-02-019
  28. Xu, X., X. Yang, D.R. Miller, J.J. Helble, and R.J. Carley (2000) A regional scale modeling study of atmospheric transport and transformation of mercury. II. Simulation results for the northeast United States, Atmos. Environ., 34, 4945-4955 https://doi.org/10.1016/S1352-2310(00)00229-6

Cited by

  1. Mercury wet deposition in rural Korea: concentrations and fluxes vol.13, pp.10, 2011, https://doi.org/10.1039/c1em10014a
  2. Characteristics of Gaseous Dissolved Mercury and Total Mercury in Yangsuri Marsh of Korea vol.34, pp.12, 2012, https://doi.org/10.4491/KSEE.2012.34.12.801
  3. Mercury concentrations in environmental media at a hazardous solid waste landfill site and mercury emissions from the site vol.76, pp.10, 2017, https://doi.org/10.1007/s12665-017-6700-z