Morphology and Leaf Color Changes of Grafted Tomato Plug Seedlings Irradiated by Different Wavelengths of Photosynthetically Active Radiation during Low Light Irradiation Storage

저광 조사 저온 저장 중 PAR의 각 파장에 의한 토마토 플러그 묘의 형태 및 엽색의 변화

  • Park, Jong-Seok (Graduate School of Agricultural and Life Sciences, The University of Tokyo) ;
  • Fujiwara, Kazuhiro (Graduate School of Agricultural and Life Sciences, The University of Tokyo)
  • Published : 2008.12.31

Abstract

To investigate the effects of different wavelengths of photosynthetically active radiation on the morphology and leaf color changes of a single tomato (Lycopersicon esculentum) seedling, we stored the seedling at $10{\pm}0.5^{\circ}C$ under eight different wavelengths (peak wavelengths; 405, 450, 505, 545, 600, 645, 680, and 700 nm) with a constant photosynthetic photon flux of $3{\mu}mol\;m^{-2}s^{-l}$ for 28 d. Under the 405, 450, and 505 nm wavelength conditions, the leaves of the seedlings showed vigorous shape with an upright morphology. Rachis elongation was suppressed and hence compact appearance was observed under the 450 and 505 urn conditions. Although the difference in leaf color between before storage and on 28 days after storage was observed under all wavelength conditions, the 405 and 700 um irradiations changed the leaf color to light green. Application of light-emitting diode (LED) light irradiated from around 450 to 545 nm can contribute to vigorous shape with an upright morphology of tomato seedlings during low light irradiation-low temperature storage.

본 연구는 저광 조사 저온 저장 중 광합성유효방사(PAR)내의 각 파장이 토마토 묘의 형태와 엽색 변화에 미치는 영향을 조사하기 위하여 실시되었다. $10{\pm}0.5^{\circ}C$의 온도와 피크 파장이 각각 405, 450, 505, 545, 600, 645, 680, 700nm의 발광다이오드로부터 조사된 $3{\mu}mol\;m^{-2}s^{-1}$의 광합성유효광량 자속밀도 조건에서 토마토 접목묘를 28일간 저장하였다. 405, 450, 505nm의 파장에서 저장된 묘의 잎은 다른 파장에서 저장된 잎에 비해 직립하는 경향을 보였으며, 특히 450과 505nm 파장에서 저장된 묘의 경우 엽축 생장이 억제되면서 콤팩트한 형태를 보였다. 파장의 변화에 따른 엽색의 규칙적인 변화는 저장 전후를 비교하여 관찰되지 않았으나, 405와 700nm 파장에서 저장된 묘는 엷은 녹색을 나타내었다. 저광 조사 저온 저장 중, $450{\sim}545nm$ 영역의 광조사는 토마토 묘의 직립을 유도하여 외관상 건강한 묘로 인정 받는데 기여할 것으로 기대된다.

Keywords

References

  1. Dougher T.A. and B. Bugbee. 2001. Evidence for yellow light suppression of lettuce growth. Photochem. and Photobiol. 73:208-212 https://doi.org/10.1562/0031-8655(2001)073<0208:EFYLSO>2.0.CO;2
  2. Dougher T.A. and B. Bugbee. 2004. Long-term blue light effects on the histology of lettuce and soybean leaves and stems. J. Amer. Soc. Hort. Sci. 129:467- 472
  3. Folta, K.M. and S.A. Maruhnich. 2007. Green light: a signal to slow down or stop. J. Expt. Bot. 58:3099- 3111 https://doi.org/10.1093/jxb/erm130
  4. Frechilla, S., L.D. Talbott, R.A. Bogomolni, and E. Zeiger. 2000. Reversal of blue light-stimulated stomatal opening by green light. Plant Cell Physiol. 41:171-176 https://doi.org/10.1093/pcp/41.2.171
  5. Fujiwara, K., K. Takaku, and M. Iimoto. 1999. Optimum conditions of low light irradiation-CA storage for preservation of the visual quality of postharvest whole chervil (Anthriscus cerefolium L.) (in Japanese with English abstract and captions). Environ. Control Biol. 37:203-210 https://doi.org/10.2525/ecb1963.37.203
  6. Fujiwara, K., S. Isobe, and M. Iimoto. 2001. Optimum conditions of low light irradiation-CA storage for quality preservation of grafted tomato plug seedlings (in Japanese with English abstract and captions). Environ. Control Biol. 39:111-120 https://doi.org/10.2525/ecb1963.39.111
  7. Fujiwara, K., T. Sawada, Y. Kimura, and K. Kurata. 2005. Application of an automatic control system of photosynthetic photon flux density for LED-low light irradiation storage of green plants. HortTechnology 15:781-786
  8. Heins, R., N. Lange, and T.F. Wallace, Jr. 1992. Lowtemperature storage of bedding-plant plugs, p. 45-64. In: K. Kurata and T. Kozai (eds.) Transplant production systems. Kluwer Academic Publishers, Netherlands
  9. Kozai, T., C. Kubota, K. Sakami, K. Fujiwara, and Y. Kitaya. 1996. Growth suppression and quality preservation of eggplant plug seedlings by low temperature storage under dim light (in Japanese with English abstract and captions). Environ. Control Biol. 34:135- 139 https://doi.org/10.2525/ecb1963.34.135
  10. Kubota, C. and T. Kozai. 1995. Low-temperature storage of transplants at the light compensation point: Air temperature and light intensity for growth suppression and quality preservation. Sci. Hort. 61:193-204 https://doi.org/10.1016/0304-4238(94)00717-T
  11. Kubota, C., N.C. Rajapakse, and R.E. Young. 1996. Low-temperature storage of micropropagated plantlets under selected light environments. Hortscience 31:449 -452
  12. Went F.W. 1957. The experimental control of plant growth. Waltham, Mass, Chronica Botanica Co
  13. Wilson S.B., K. Iwabuchi, N.C. Rajapakse, and R.E. Young. 1998. Responses of broccoli seedlings to light quality during low-temperature storage in vitro: I. Morphology and survival. Hortscience 33:1253-1257