Response of Monodehydroascorbate Reductase (MDHAR) in Lettuce (Lactuca sativa L.) Leaves Subjected to Water Deficit Stress

수분 부족 스트레스 처리시 Monodehydroascorbate Reductase (MDHAR)의 반응

  • Kang, Sang-Jae (Dept. of Environmental Horticulture, Kyungpook Nat'l University)
  • 강상재 (경북대학교 환경원예학과)
  • Published : 2008.12.31

Abstract

The relationship between water deficit stress and monodehydroascorbate reductase (MDHAR) activity was determined in lettuce (Lactuca sativa L.) leaves under water stress condition imposed by with-holding water for 72 hrs. Relative water content determined in water deficit stressed lettuce leaves gradually reduced from 91.29% to 74.58%, and water content of medium drastically decreased 4.73% after quitting of irrigation. Hydrogen peroxide content in leaves subjected to water deficit stress rapidly increased, but soluble protein content rapidly decreased when those were compared to control plant. The relationship between relative water content and hydrogen peroxide content in stressed leaves positively correlated with $R^2$=0.8851, but soluble protein content reversely correlated with $R^2$=0.9826. Total chlorophyll content in stressed plant leaves was higher than that of control plant, and increased rapidly in early stage of treatment of both stressed and control plants. Carotenoid content was higher than that of control plant, and the ratio of carotenoid to total chlorophyll in stressed plant was higher as compared to control plant. As water deficit stress continued progressively, total ascorbate content in stressed plant leaves was a little higher than that of control plant. But dehydroascorbate (DHA) content within 6 hr of water deficit stress was higher than that of control plant, and then, content of control plant in 12 hr of stress treatment higher than that of stressed leaves. The activity of monodehydroascorbate reductase of cytosolic and chloroplastic tractions increased dramatically, and mRNA of MDHAR was highly detected by probing $^{32}P$-labeled single stranded MDHAR RNA of lettuce plant leaves subjected to water deficit stress. Relationship between MDHAR activity and relative water content and hydrogen peroxide highly correlated with $R^2$=0.9937 and 0.8645, respectively.

수분 공급을 제한하여 수분 부족 스트레스를 처리한 상추식물에서 산화적 스트레스와 관련된 monodehydroascorbate reductase (MDHAR)의 활성도, 엽록소 함량, 과산화수소의 함량 등과의 상관관계를 조사한 결과, 생육배지의 수분의 함량이 감소함에 따라 식물체내 과산화수소의 생성량이 증가($R^2$=0.8851)하였으며, 수용성단백질 함량은 점차 감소($R^2$=0.9826)하는 경향을 나타내었다. 총 엽록소함량은 수분 부족 스트레스를 처리한 공시작물에서의 함량이 정상 생육시 보다 그 함량이 대체적으로 낮은 경향을 보였으며, 엽록소 a와 엽록소 b함량 변화도 총 엽록소의 함량변화와 비슷한 경향을 보였다. 그러나 총 엽록소에 대한 카로티노이드의 비율은 수분 부족 스트레스를 처리한 식물에서 정상생육 시 보다 더 높은 경향을 보였다. 수분 부족 스트레스가 진행됨에 따라 아스코브산의 함량은 정상 생육 시 보다 더 높은 경향을 보였으나 환원형인 디하이드로아스코브산의 함량은 수분 부족 스트레스를 처리한 초기에 정상생육 시 보다 더 낮은 경향을 보였다. MDHAR의 활성도는 사이토졸(cytosolic) 분획과 엽록체(chloroplastic) 분획에서 공히 크게 증가하였으며 MDHAR의 mRNA 전사 정도도 수분 부족 스트레스가 진행됨에 따라 크게 증가하였다. 수분함량이 감소함에 따라 MDHAR의 활성도가 크게 증가하였으며, 또한 과산화수소의 함량이 증가함에 따라서도 MDHAR의 활성도가 크게 증가($R^2$=0.9937과 0.8645)되어 수분 부족 스트레스로 나타나는 요인들과 MDHAR 사이에 밀접한 관련이 있음을 확인할 수 있었다.

Keywords

References

  1. Alexieva, V., I. Sergiev, S. Mapelli, and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment 24:1337-1344 https://doi.org/10.1046/j.1365-3040.2001.00778.x
  2. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1-15 https://doi.org/10.1104/pp.24.1.1
  3. Asada, K. 1992. Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants. Physiologia Plantarum 85:235-241 https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  4. Asada, K., and M. Takahashi, 1987. Production and scavenging of active oxygen in photosynthesis. In Photoinhibition: Topics in photosynthesis(eds D.J. Kyle, C. B. Osmond and C.J. Arntzen), pp. 227-287, Elsevier, Amsterdam
  5. Bradford, M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 59:248-254
  6. Chang, S., J. Puryear, and J. Cairney. 1993. A simple method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11:113-116 https://doi.org/10.1007/BF02670468
  7. Chang, C.C., L. Ball, M.J. Fryer, N.R. Baker, S. Karpinski, and P.M. Mullineaux. 2004. Induction of ascorbate peroxidase 2 express in wounded Arabidopsis leaves does involve known wound signaling pathways but is associated with changes in photosynthesis. Plant J. 38:499-511 https://doi.org/10.1111/j.1365-313X.2004.02066.x
  8. Conklin, P.L. 2001. Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant, Cell and Environment 24:383-394 https://doi.org/10.1046/j.1365-3040.2001.00686.x
  9. Foyer, C.H., and B. Halliwell. 1976. Presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21-25 https://doi.org/10.1007/BF00386001
  10. Foyer, C.H., J. Rowell, and D. Walker. 1983. Measurements of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157:239-244 https://doi.org/10.1007/BF00405188
  11. Foyer, C., H. Lopez-Delgado, J.F. Dat, and I.M. Scott. 1997. Hydrogen peroxide- and glutathione-associated mechanism of acclimatory stress tolerance and signalling. Physiol. Plant 100:241-254 https://doi.org/10.1111/j.1399-3054.1997.tb04780.x
  12. Grantz, A.A., D.A. Brummell, and A.B. Bennett. 1995. Ascorbate free radical reductase mRNA levels are induced by wounding. Plant Physiol. 108:411-418 https://doi.org/10.1104/pp.108.1.411
  13. Heber, U., C. Moyake, J. Mano, C. Ohno, and K. Asada. 1996. Monodehydroascorbate radical detected by electron paramagnetic resonance spectrometry as a sensitive probe of oxidative stress in intact leaves. Plant and Cell Physiol. 37:1066-1072 https://doi.org/10.1093/oxfordjournals.pcp.a029055
  14. Hossain, M.A. and K. Asada. 1984. Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant and Cell Physiol. 25:85-92
  15. Iturbe-Ormaetxe, I., P.R. Escuredo, C. Arrese-Igor, and M. Becana. 1998. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol. 116:173-181 https://doi.org/10.1104/pp.116.1.173
  16. Jimenez, A., J.A. Hernandez, L.A. del-Rio, and F. Sevilla. 1997. Evidence for the presence of the ascorbate glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 114:275-284 https://doi.org/10.1104/pp.114.1.275
  17. Kang, S.J., J.Y. Oh, and J.D. Chung. 1999. Changes of antioxidant enzyme activities in leaves of lettuce exposed to ozone. J. Kor. Soc. Hort. Sci. 40:541-544
  18. Kang, S.J., J.Y. Oh, and J.H. Kim. 2001. Effect of temperature of irrigation water on the growth and activities of some enzymes in cucumber seedling(Cucumis sativus L.) J. Kor. Soc. Hort. Sci. 42:399-404
  19. Kim, T.S., S.J. Kang, and W.C. Park. 1999. Changes in antioxidant enzymes activities of soybean leaves subjected to water stress. J. Korean Soc. Agric. Chem. Biotechnol. 42:246-251
  20. Leterrier, M., F.J. Corpas, J.B. Barosso, L.M. Sandalio, and L.A. del Rio. 2005. Peroxisomal monodehydroascorbate reductase. genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol. 138:2111-2123 https://doi.org/10.1104/pp.105.066225
  21. Levin, A., R. Tenkaken, R. Dixon, and C. Lamb. 1994. $H_2O_2$ from the oxidative burst orchestra the plant hypersensitive disease resistance response. Cell 79: 583-593 https://doi.org/10.1016/0092-8674(94)90544-4
  22. Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350-382 https://doi.org/10.1016/0076-6879(87)48036-1
  23. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sci. 7:405-410 https://doi.org/10.1016/S1360-1385(02)02312-9
  24. Morell, S., H. Follmann, M.D. Tullio, and I. Haberlein. 1997. Dehydroascorbate and dehydroascorbate reductase are phantom indicator of oxidative stress in plants. FEBS Letters 414:567-570 https://doi.org/10.1016/S0014-5793(97)01074-0
  25. Padh, H. 1990. Cellular functions of ascorbic acid. Biochem. and Cell Biol. 68:1166-1173 https://doi.org/10.1139/o90-173
  26. Pastori, G.M., G. Kiddle, J. Antonie, S. Bernard, S. Veljovic-Jovanovic, P.J. Verrier, G. Noctor, and C.H. Foyer. 2003. Leaf vitamine C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. The Plant Cell 15:939-951 https://doi.org/10.1105/tpc.010538
  27. Sambrook, J., E. Fritsch, T. Maniatis. 1989. Molecular cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  28. Sano, S., S. Tao, Y. Endo, T. Inaba, M.A. Hossain, C. Miyake, M. Matsuo, H. Aoki, and K. Saito. 2005. Purification and cDNA cloning of chloroplastic monodehydro ascorbate reductase from spinach. Biosci. Biotechnol. Biochem. 69:762-772 https://doi.org/10.1271/bbb.69.762
  29. Shigeoka, S., T. Ishikawa, M. Tamoi, Y. Miyakawa, T. Takeda, Y. Yabuta, and K. Yoshimura. 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. of Exp. Bot. 53:1305-1319 https://doi.org/10.1093/jexbot/53.372.1305
  30. Smirnoff, N. and G.L. Wheeler. 2000. Ascorbic acid in plants: biosynthesis and function. Crit. Rev. Plant Sci. 19:267-290 https://doi.org/10.1016/S0735-2689(00)80005-2
  31. Tambussi, E.A., C.G. Bartoli, J. Beltrano, J.J. Guiamet, and J.L. Araus. 2000. Oxidative damage to thylakoid proteins in water stressed leaves of wheat (Triticum aestivum). Physiologia Plantarum 108:398-404 https://doi.org/10.1034/j.1399-3054.2000.108004398.x
  32. Tokunaga, T., K. Miyahara, K. Tabata, and M. Esaka. 2005. Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for L-galactono-1,4-lactone dehydrogenase. Planta 220:845-863
  33. Veljovic-Jovanovic, S.D., C. Pignocchi, G. Noctor, and C.H. Foyer. 2001. Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intercellular redistribution of the antioxidant system. Plant Physiol. 127;426-435 https://doi.org/10.1104/pp.010141
  34. Yabuta, Y., T. Maruta, K. Yoshimura, T. Ishikawa, and S. Shigeoka. 2004. Two distinct redox signaling pathways for cytosolic APX induction under photooxidative stress. Plant Cell Physiol. 45:1586-1594 https://doi.org/10.1093/pcp/pch181
  35. Yoshimura, K., Y. Yabuta, T. Ishikawa, and S. Shigeoka. 2000. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol. 123:223-233 https://doi.org/10.1104/pp.123.1.223
  36. Zlatev, Z.S., F.C. Lidom, J.C. Ramalho, and I.T. Yordanov. 2006. Comparision of resistance to drought of three bean cultivar. Biologia Plantrum 50:389-394 https://doi.org/10.1007/s10535-006-0054-9