References
- Benveniste, E. N. 1997. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J. Mol. Med. 75: 165-173 https://doi.org/10.1007/s001090050101
- Boujedaini, N., J. Liu, C. Thuillez, L. Cazin, and A. G. Mensah- Nyagan. 2001. In vivo regulation of vasomotoricity by nitric oxide and prostanoids during gestation. Eur. J. Pharmacol. 427: 143-149 https://doi.org/10.1016/S0014-2999(01)01233-X
- Boyle, E. A. and P. L. McGeer. 1990. Cellular immune response in multiple sclerosis plaques. Am. J. Pathol. 137: 575-584
- Chen, Y. C., S. C. Shen, W. R. Lee, W. C. Hou, L. L. Yang, and T. J. Lee. 2001. Inhibition of nitric oxide synthase inhibitors and lipopolysaccharide induced inducible NOS and cyclooxygenase- 2 gene expressions by rutin, quercetin, and quercetin pentaacetate in RAW 264.7 macrophages. J. Cell Biochem. 82: 537-548 https://doi.org/10.1002/jcb.1184
- Chun, W., H. J. Lee, P. J. Kong, G. H. Lee, I. Y. Cheong, and S. S. Kim. 2005. Synthetic wogonin derivatives suppress lipopolysaccharide-induced nitric oxide production and hydrogen peroxide-induced cytotoxicity. Arch. Pharm. Res. 28: 216-219 https://doi.org/10.1007/BF02977718
-
Combs, C. K., J. C. Karlo, S. C. Kao, and G. E. Landreth. 2001.
$\beta$ -Amyloid stimulation of microglia and monocytes results in TNF-alpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 21: 1179-1188 https://doi.org/10.1523/JNEUROSCI.21-04-01179.2001 - Feldmann, M., F. M. Brennan, and R. Maini. 1998. Cytokines in autoimmune disorders. Int. Rev. Immunol. 17: 217-228 https://doi.org/10.3109/08830189809084493
- Gelman, B. B. 1993. Diffuse microgliosis associated with cerebral atrophy in the acquired immunodeficiency syndrome. Ann. Neurol. 34: 65-70 https://doi.org/10.1002/ana.410340112
- Gonzalez-Scarano, F. and G. Baltuch. 1999. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22: 219-240 https://doi.org/10.1146/annurev.neuro.22.1.219
- Hou, R. C., H. L. Chen, J. T. Tzen, and K. C. Jeng. 2003. Effect of sesame antioxidants on LPS-induced NO production by BV2 microglial cells. Neuroreport 14: 1815-1819 https://doi.org/10.1097/00001756-200310060-00011
- Jeohn, G. H., C. L. Cooper, K. J. Jang, B. Liu, D. S. Lee, H. C. Kim, and J. S. Hong. 2002. Go6976 inhibits LPS-induced microglial TNFalpha release by suppressing p38 MAP kinase activation. Neuroscience 114: 689-697 https://doi.org/10.1016/S0306-4522(02)00356-1
- Kang, G., P. J. Kong, Y. J. Yuh, S. Y. Lim, S. V. Yim, W. Chun, and S. S. Kim. 2004. Curcumin suppresses lipopolysaccharideinduced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappab bindings in BV2 microglial cells. J. Pharmacol Sci. 94: 325-328 https://doi.org/10.1254/jphs.94.325
- Kim, W. K., P. G. Jang, M. S. Woo, I. O. Han, H. Z. Piao, T. H. Joh, and H. S. Kim. 2004. A new anti-inflammatory agent KL- 1037 represses proinflammatory cytokine and inducible nitric oxide synthase (iNOS) gene expression in activated microglia. Neuropharmacology 47: 243-252 https://doi.org/10.1016/j.neuropharm.2004.03.019
- Kreutzberg, G. W. 1996. Microglia: A sensor for pathological events in the CNS. Trends Neurosci. 19: 312-318 https://doi.org/10.1016/0166-2236(96)10049-7
- McGeer, P. L., D. G. Kawamata, H. Walker, I. Akiyama, and E. G. McGeer. 1993. Microglia in degenerative neurological disease. Glia. 7: 84-92 https://doi.org/10.1002/glia.440070114
- Minghetti, L. and G. Levi. 1995. Induction of prostanoid biosynthesis by bacterial lipopolysaccharide and isoproterenol in rat microglial cultures. J. Neurochem. 65: 2690-2698 https://doi.org/10.1046/j.1471-4159.1995.65062690.x
- Phizackerley, P. J. and S. A. Al-Dabbagh. 1983. The estimation of nitrate and nitrite in saliva and urine. Anal. Biochem. 131: 242-245 https://doi.org/10.1016/0003-2697(83)90161-6
- Rosenbaum, J. T., H. O. McDevitt, R. B. Guss, and P. R. Egbert. 1980. Endotoxin-induced uveitis in rats as a model for human disease. Nature 286: 611-613 https://doi.org/10.1038/286611a0
- Schmidt, H. H. and U. Walter. 1994. NO at work. Cell 78: 919-925 https://doi.org/10.1016/0092-8674(94)90267-4
- Schmidt, H. W. and M. Kelm. 1996. Determination of nitrite and nitrate by the Griess reaction. In: Methods in Nitric Oxide Research, pp. 491-497. John Wiley, Sons Ltd
-
Tha, K. K., Y. Oskuma, H. Miyazaki, T. Murayama, T. Uehara, and R. Hatakeyama. 2000. Changes in expressions of proinflammatory cytokines IL-1
$\beta$ TNF-$\alpha$ , and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res. 885: 25-31 https://doi.org/10.1016/S0006-8993(00)02883-3 - Tracey, K. J. and A. Cerami. 1994. Tumor necrosis factor: A pleiotropic cytokine and therapeutic target. Annu. Rev. Med. 45: 491-503 https://doi.org/10.1146/annurev.med.45.1.491
- Urushitani, M., S. Shimohama, T. Kihara, H. Sawada, A. Akaike, M. Ibi, et al. 1998. Mechanism of selective motor neuronal death after exposure of spinal cord to glutamate: Involvement of glutamate-induced nitric oxide in motor neuron toxicity and nonmotor neuron protection. Ann. Neurol. 44: 796-807 https://doi.org/10.1002/ana.410440514
Cited by
- Astaxanthin, oxidative stress, inflammation and cardiovascular disease vol.5, pp.4, 2009, https://doi.org/10.2217/fca.09.19
- Astaxanthin prevents in vitro auto-oxidative injury in human lymphocytes vol.26, pp.5, 2008, https://doi.org/10.1007/s10565-010-9156-4
- Neuroprotective effect of astaxanthin on H2O2-induced neurotoxicity in vitro and on focal cerebral ischemia in vivo vol.1360, pp.None, 2008, https://doi.org/10.1016/j.brainres.2010.09.016
- Astaxanthin addition improves human neutrophils function: in vitro study vol.49, pp.8, 2008, https://doi.org/10.1007/s00394-010-0103-1
- Simplified Heterocyclic Analogues of Fluoxetine Inhibit Inducible Nitric Oxide Production in Lipopolysaccharide-Induced BV2 Cells vol.34, pp.4, 2008, https://doi.org/10.1248/bpb.34.538
- Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease vol.9, pp.3, 2008, https://doi.org/10.3390/md9030447
- Oxidative stress in human lymphocytes treated with fatty acid mixture: Role of carotenoid astaxanthin vol.25, pp.7, 2008, https://doi.org/10.1016/j.tiv.2011.04.018
- Minimizing the cancer-promotional activity of cox-2 as a central strategy in cancer prevention vol.78, pp.1, 2008, https://doi.org/10.1016/j.mehy.2011.09.039
- Astaxanthin in Cardiovascular Health and Disease vol.17, pp.2, 2008, https://doi.org/10.3390/molecules17022030
- Bioactive Compounds from Macroalgae in the New Millennium: Implications for Neurodegenerative Diseases vol.12, pp.9, 2014, https://doi.org/10.3390/md12094934
- Carotenoids: potential allies of cardiovascular health? vol.59, pp.None, 2008, https://doi.org/10.3402/fnr.v59.26762
- Lutein suppresses inflammatory responses through Nrf2 activation and NF‐κB inactivation in lipopolysaccharide‐stimulated BV‐2 microglia vol.59, pp.9, 2015, https://doi.org/10.1002/mnfr.201500109
- Trans-Cinnamaldehyde, An Essential Oil in Cinnamon Powder, Ameliorates Cerebral Ischemia-Induced Brain Injury via Inhibition of Neuroinflammation Through Attenuation of iNOS, COX-2 Expression and NF vol.18, pp.3, 2016, https://doi.org/10.1007/s12017-016-8395-9
- Astaxanthin Protects Against Retinal Damage: Evidence from In Vivo and In Vitro Retinal Ischemia and Reperfusion Models vol.41, pp.11, 2008, https://doi.org/10.3109/02713683.2015.1127392
- Effects of Astaxanthin from Litopenaeus Vannamei on Carrageenan-Induced Edema and Pain Behavior in Mice vol.21, pp.3, 2008, https://doi.org/10.3390/molecules21030382
- Effects of Dietary Supplementation with Astaxanthin on Histamine Induced Lesions in the Gizzard and Proventriculus of Broiler Chicks vol.29, pp.6, 2008, https://doi.org/10.5713/ajas.15.1020
- Astaxanthin reduces type 2 diabetic-associated cognitive decline in rats via activation of PI3K/Akt and attenuation of oxidative stress vol.13, pp.1, 2008, https://doi.org/10.3892/mmr.2015.4615
- Immunomodulators as Therapeutic Agents in Mitigating the Progression of Parkinson’s Disease vol.6, pp.4, 2016, https://doi.org/10.3390/brainsci6040041
- Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration vol.39, pp.1, 2008, https://doi.org/10.1007/s11357-017-9958-x
- Microalgae as healthy ingredients for functional food: a review vol.8, pp.8, 2008, https://doi.org/10.1039/c7fo00409e
- Astaxanthin induces migration in human skin keratinocytes via Rac1 activation and RhoA inhibition vol.11, pp.4, 2017, https://doi.org/10.4162/nrp.2017.11.4.275
- Astaxanthin Ameliorates Doxorubicin-Induced Cognitive Impairment (Chemobrain) in Experimental Rat Model: Impact on Oxidative, Inflammatory, and Apoptotic Machineries vol.55, pp.7, 2008, https://doi.org/10.1007/s12035-017-0797-7
- Marine natural pigments as potential sources for therapeutic applications vol.38, pp.5, 2008, https://doi.org/10.1080/07388551.2017.1398713
- Anti-neuroinflammatory effects of ethanolic extract of black chokeberry (Aronia melanocapa L.) in lipopolysaccharide-stimulated BV2 cells and ICR mice vol.12, pp.1, 2018, https://doi.org/10.4162/nrp.2018.12.1.13
- Astaxanthin is neuroprotective in an aged mouse model of Parkinson’s disease vol.9, pp.12, 2008, https://doi.org/10.18632/oncotarget.23737
- Anti-inflammatory effect of Tauroursodeoxycholic acid in RAW 264.7 macrophages, Bone marrow-derived macrophages, BV2 microglial cells, and spinal cord injury vol.8, pp.None, 2008, https://doi.org/10.1038/s41598-018-21621-5
- Dietary Composition and Cardiovascular Risk: A Mediator or a Bystander? vol.10, pp.12, 2018, https://doi.org/10.3390/nu10121912
- Astaxanthin as a Peroxisome Proliferator-Activated Receptor (PPAR) Modulator: Its Therapeutic Implications vol.17, pp.4, 2008, https://doi.org/10.3390/md17040242
- Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient vol.8, pp.10, 2008, https://doi.org/10.3390/jmse8100789
- Antioxidant and anti-inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review) vol.47, pp.1, 2008, https://doi.org/10.3892/ijmm.2020.4783
- Astaxanthin, COVID‐19 and immune response: Focus on oxidative stress, apoptosis and autophagy vol.34, pp.11, 2020, https://doi.org/10.1002/ptr.6797
- Astaxanthin and its Effects in Inflammatory Responses and Inflammation-Associated Diseases: Recent Advances and Future Directions vol.25, pp.22, 2020, https://doi.org/10.3390/molecules25225342
- Alzheimer’s disease: natural products as inhibitors of neuroinflammation vol.28, pp.6, 2008, https://doi.org/10.1007/s10787-020-00751-1
- Astaxanthin engages the l-arginine/NO/cGMP/KATP channel signaling pathway toward antinociceptive effects vol.32, pp.8, 2008, https://doi.org/10.1097/fbp.0000000000000655
- Neuroprotective Natural Products for Alzheimer’s Disease vol.10, pp.6, 2021, https://doi.org/10.3390/cells10061309
- An Overview of NO Signaling Pathways in Aging vol.26, pp.15, 2008, https://doi.org/10.3390/molecules26154533
- Multi‐Mechanistic Antidiabetic Potential of Astaxanthin: An Update on Preclinical and Clinical Evidence vol.65, pp.24, 2021, https://doi.org/10.1002/mnfr.202100252
- Anti-inflammatory and antioxidant effects of astaxanthin following spinal cord injury in a rat animal model vol.177, pp.None, 2021, https://doi.org/10.1016/j.brainresbull.2021.10.014
- Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases vol.145, pp.None, 2008, https://doi.org/10.1016/j.biopha.2021.112179
- Imidazolylacetophenone oxime-based multifunctional neuroprotective agents: Discovery and structure-activity relationships vol.228, pp.None, 2008, https://doi.org/10.1016/j.ejmech.2021.114031