DOI QR코드

DOI QR Code

Induction of Apoptosis by Aqueous Extract of Cordyceps militaris Through Activation of Caspases and Inactivation of Akt in Human Breast Cancer MDA-MB-231 Cells

  • Jin, Cheng-Yun (Department of Biomaterial Control (BK21 Program), Dongeui University Graduate School Department of Biochemistry, Dongeui University College of Oriental Medicine) ;
  • Kim, Gi-Young (Faculty of Applied Marine Science, Cheju National University) ;
  • Choi, Yung-Hyun (Department of Biomaterial Control (BK21 Program), Dongeui University Graduate School Department of Biochemistry, Dongeui University College of Oriental Medicine)
  • Published : 2008.12.31

Abstract

Cordyceps militaris is well known as a traditional medicinal mushroom and has been shown to exhibit immunostimulatory and anticancer activities. In this study, we investigated the apoptosis induced by an aqueous extract of C. militaris (AECM) via the activation of caspases and altered mitochondrial membrane permeability in human breast cancer MDA-MB-231 cells. Exposure to AECM induced apoptosis, as demonstrated by a quantitative analysis of nuclear morphological change and a flow cytometric analysis. AECM increased hyperpolarization of mitochondrial membrane potential and promoted the activation of caspases. Both the cytotoxic effect and apoptotic characteristics induced by AECM treatment were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, which demonstrates the important role of caspase-3 in the observed cytotoxic effect. AECM-induced apoptosis was associated with the inhibition of Akt activation in a time-dependent manner, and pretreatment with LY294002, a PI3K/Akt inhibitor, significantly increased AECM-induced apoptosis. The results indicated that AECM-induced apoptosis may relate to the activation of caspase-3 and mitochondria dysfunctions that correlate with the inactivation of Akt.

Keywords

References

  1. Alkhalaf, M., A. El-Mowafy, W. Renno, O. Rachid, A. Ali, and R. Al-Attyiah. 2008. Resveratrol-induced apoptosis in human breast cancer cells is mediated primarily through the caspase-3- dependent pathway. Arch. Med. Res. 39: 162-168 https://doi.org/10.1016/j.arcmed.2007.09.003
  2. Chung, H., Y. M. Jung, D. H. Shin, J. Y. Lee, M. Y. Oh, H. J. Kim, et al. 2008. Anticancer effects of wogonin in both estrogen receptor-positive and -negative human breast cancer cell lines in vitro and in nude mice xenografts. Int. J. Cancer 122: 816-822 https://doi.org/10.1002/ijc.23182
  3. Datta, S. R., A. Brunet, and M. E. Greenberg. 1999. Cellular survival: A play in three Akts. Genes Dev. 13: 2905-2927 https://doi.org/10.1101/gad.13.22.2905
  4. Dizin, E., H. Ray, F. Suau, T. Voeltzel, and N. Dalla Venezia. 2008. Caspase-dependent BRCA1 cleavage facilitates chemotherapyinduced apoptosis. Apoptosis 13: 237-246 https://doi.org/10.1007/s10495-007-0167-4
  5. Dlugosz, P. J., L. P. Billen, M. G. Annis, W. Zhu, Z. Zhang, J. Lin, B. Leber, and D. W. Andrews. 2006. Bcl-2 changes conformation to inhibit Bax oligomerization EMBO J. 25: 2287-2296 https://doi.org/10.1038/sj.emboj.7601126
  6. Emi, M., R. Kim, K. Tanabe, Y. Uchida, and T. Toge. 2005. Targeted therapy against Bcl-2-related proteins in breast cancer cells. Breast Cancer Res. 7: R940-R952 https://doi.org/10.1186/bcr1323
  7. Hseu, Y. C., S. C. Chen, P. C. Tsai, C. S. Chen, F. J. Lu, N. W. Chang, and H. L. Yang. 2007. Inhibition of cyclooxygenase-2 and induction of apoptosis in estrogen-nonresponsive breast cancer cells by Antrodia camphorata. Food Chem. Toxicol. 45: 1107-1115 https://doi.org/10.1016/j.fct.2006.12.012
  8. Jin, C. Y., Y. H. Choi, D. O. Moon, C. Park, Y. M. Park, S. C. Jeong, et al. 2006. Induction of G2/M arrest and apoptosis in human gastric epithelial AGS cells by aqueous extract of Agaricus blazei. Oncol. Rep. 16: 1349-1355
  9. Jin, C. Y., D. O. Moon, J. D. Lee, M. S. Heo, Y. H. Choi, C. M. Lee, Y. M. Park, and G. Y. Kim. Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis through downregulation of ERK and Akt in lung adenocarcinoma A549 cells. Carcinogenesis 28: 1058-1066 https://doi.org/10.1093/carcin/bgl251
  10. Kim, K. C., J. S. Kim, J. K. Son, and I. G. Kim. 2007. Enhanced induction of mitochondrial damage and apoptosis in human leukemia HL-60 cells by the Ganoderma lucidum and Duchesnea chrysantha extracts. Cancer Lett. 246: 210-217 https://doi.org/10.1016/j.canlet.2006.02.014
  11. Kim, G. Y., W. S. Ko, J. Y. Lee, J. O. Lee, C. H. Ryu, B. T. Choi, et al. 2006. Water extract of Cordyceps militaris enhances maturation of murine bone marrow-derived dendritic cells in vitro. Biol. Pharm. Bull. 29: 354-360 https://doi.org/10.1248/bpb.29.354
  12. Kim, T. H., J. W. Park, J. Y. Lee, Y. J. Surh, and T. K. Kwon. 2003. Bcl-2 overexpression prevents daunorubicin-induced apoptosis through inhibition of XIAP and Akt degradation. Biochem. Pharmacol. 66: 1779-1786 https://doi.org/10.1016/S0006-2952(03)00545-8
  13. Kuo, M. C., C. Y. Chang, T. L. Cheng, and M. J. Wu. 2007. Immunomodulatory effect of exo-polysaccharides from submerged cultured Cordyceps sinensis: Enhancement of cytokine synthesis, CD11b expression, and phagocytosis. Appl. Microbiol. Biotechnol. 75: 769-775 https://doi.org/10.1007/s00253-007-0880-5
  14. Lee, H., Y. J. Kim, H. W. Kim, D. H. Lee, M. K. Sung, and T. Park. 2006. Induction of apoptosis by Cordyceps militaris through activation of caspase-3 in leukemia HL-60 cells. Biol. Pharm. Bull. 29: 670-674 https://doi.org/10.1248/bpb.29.670
  15. Lin, P. H., C. H. Lin, C. C. Huang, M. C. Chuang, and P. Lin. 2007. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces oxidative stress, DNA strand breaks, and poly(ADP-ribose) polymerase-1 activation in human breast carcinoma cell lines. Toxicol. Lett. 172: 146-158 https://doi.org/10.1016/j.toxlet.2007.06.003
  16. McDonald, P. C., A. Oloumi, J. Mills, I. Dobreva, M. Maidan, V. Gray, et al. 2008. Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival. Cancer Res. 68: 1618-1624 https://doi.org/10.1158/0008-5472.CAN-07-5869
  17. Nicholson, K. M. and N. G. Anderson. 2002. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 14: 381-395 https://doi.org/10.1016/S0898-6568(01)00271-6
  18. Nigam, M., V. Ranjan, S. Srivastava, R. Sharma, and A. K. Balapure. 2008. Centchroman induces G(0)/G(1) arrest and caspase-dependent apoptosis involving mitochondrial membrane depolarization in MCF-7 and MDA MB-231 human breast cancer cells. Life Sci. 82: 577-590 https://doi.org/10.1016/j.lfs.2007.11.028
  19. Oh, J. Y., Y. M. Baek, S. W. Kim, H. J. Hwang, H. S. Hwang, S. H. Lee, and J. W. Yun. 2008. Apoptosis of human hepatocarcinoma (HepG2) and neuroblastoma (SKN-SH) cells induced by polysaccharides-peptide complexes produced by submerged mycelial culture of an entomopathogenic fungus Cordyceps sphecocephala. J. Microbiol. Biotechnol. 18: 512-519
  20. Oliveras-Ferraros, C., A. Vazquez-Martin, R. Colomer, R. De Llorens, J. Brunet, and J. A. Menendez. 2008. Sequencedependent synergism and antagonism between paclitaxel and gemcitabine in breast cancer cells: The importance of scheduling. Int. J. Oncol. 32: 113-120
  21. Parihar, A., M. S. Parihar, and P. Ghafourifar. 2008. Significance of mitochondrial calcium and nitric oxide for apoptosis of human breast cancer cells induced by tamoxifen and etoposide. Int. J. Mol. Med. 21: 317-324
  22. Park, C., S. H. Hong, J. Y. Lee, G. Y. Kim, B. T. Choi, Y. T. Lee, et al. 2005. Growth inhibition of U937 leukemia cells by aqueous extract of Cordyceps militaris through induction of apoptosis. Oncol. Rep. 13: 1211-1246
  23. Park, J. W., Y. J. Choi, S. I. Suh, W. K. Baek, M. H. Suh, I. N. Jin, et al. 2001. Bcl-2 overexpression attenuates resveratrolinduced apoptosis in U937 cells by inhibition of caspase-3 activity. Carcinogenesis 22: 1633-1639 https://doi.org/10.1093/carcin/22.10.1633
  24. Qiao, X., X. Chen, D. Wu, R. Ding, J. Wang, Q. Hong, et al. 2005. Mitochondrial pathway is responsible for aging-related increase of tubular cell apoptosis in renal ischemia/reperfusion injury. J. Gerontol. A Biol. Sci. Med. Sci. 60: 830-839 https://doi.org/10.1093/gerona/60.7.830
  25. Rahmani, M., E. Reese, Y. Dai, C. Bauer, S. G. Payne, P. Dent, S. Spiegel, and S. Grant. 2005. Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res. 65: 2422-2432 https://doi.org/10.1158/0008-5472.CAN-04-2440
  26. Thees, S., G. B. Hubbard, J. Winckler, C. Schultz, and A. Rami. 2005. Specific alteration of the Bax/Bcl2 ratio and cytochrome c without execution of apoptosis in the hippocampus of aged baboons. Restor. Neurol. Neurosci. 23: 1-9
  27. Wu, C. C., M. L. Chan, W. Y. Chen, C. Y. Tsai, F. R. Chang, and Y. C. Wu. 2005. Pristimerin induces caspase-dependent apoptosis in MDA-MB-231 cells via direct effects on mitochondria. Mol. Cancer Ther. 4: 1277-1285 https://doi.org/10.1158/1535-7163.MCT-05-0027
  28. Xia, Z., M. Dickens, J. Raingeaud, R. J. Davis, and M. E. Greenberg. 1995. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326-1331 https://doi.org/10.1126/science.270.5240.1326
  29. Xiao, D., V. Vogel, and S. V. Singh. 2006. Benzyl isothiocyanateinduced apoptosis in human breast cancer cells is initiated by reactive oxygen species and regulated by Bax and Bak. Mol. Cancer Ther. 5: 2931-2945 https://doi.org/10.1158/1535-7163.MCT-06-0396
  30. Yang, H. L., C. S. Chen, W. H. Chang, F. J. Lu, Y. C. Lai, C. C. Chen, T. H. Hseu, C. T. Kuo, and Y. C. Hseu. 2006. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata. Cancer Lett. 231: 215-227 https://doi.org/10.1016/j.canlet.2005.02.004
  31. Yang, H. Y., S. F. Leu, Y. K. Wang, C. S. Wu, and B. M. Huang. 2006. Cordyceps sinensis mycelium induces MA-10 mouse Leydig tumor cell apoptosis by activating the caspase-8 pathway and suppressing the NF-$\_KB$ pathway. Arch. Androl. 52: 103-110 https://doi.org/10.1080/01485010500315818
  32. Yu, C., X. Mao, and W. X. Li. 2005. Inhibition of the PI3K pathway sensitizes fludarabine-induced apoptosis in human leukemic cells through an inactivation of MAPK-dependent pathway. Biochem. Biophys. Res. Commun. 331: 391-397 https://doi.org/10.1016/j.bbrc.2005.03.182
  33. Zhang, M., R. Guo, Y. Zhai, and D. Yang. 2003. LIGHT sensitizes IFN${\gamma}$-mediated apoptosis of MDA-MB-231 breast cancer cells leading to down-regulation of anti-apoptosis Bcl-2 family members. Cancer Lett. 195: 201-210 https://doi.org/10.1016/S0304-3835(03)00148-4
  34. Zhu, J. S., G. M. Halpern, and K. Jones. 1998. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis. J. Altern. Complem. Med. 4: 289-303 https://doi.org/10.1089/acm.1998.4.3-289

Cited by

  1. Cordlan polysaccharide isolated from mushroom Cordyceps militaris induces dendritic cell maturation through toll-like receptor 4 signalings vol.48, pp.7, 2008, https://doi.org/10.1016/j.fct.2010.04.036
  2. Commonly consumed and specialty dietary mushrooms reduce cellular proliferation in MCF-7 human breast cancer cells vol.235, pp.11, 2010, https://doi.org/10.1258/ebm.2010.010113
  3. Down‐regulation of BMI‐1 cooperates with artemisinin on growth inhibition of nasopharyngeal carcinoma cells vol.112, pp.7, 2008, https://doi.org/10.1002/jcb.23114
  4. 인간 전립선 암세포 PC-3 세포에서 Silibinin의 세포주기조절을 통한 세포사멸 유도 효과 vol.21, pp.11, 2008, https://doi.org/10.5352/jls.2011.21.11.1573
  5. Cordyceps militaris Grown on Germinated Soybean Induces G2/M Cell Cycle Arrest through Downregulation of Cyclin B1 and Cdc25c in Human Colon Cancer HT-29 Cells vol.2012, pp.None, 2008, https://doi.org/10.1155/2012/249217
  6. Cordyceps militaris and mycelial fermentation induced apoptosis and autophagy of human glioblastoma cells vol.3, pp.None, 2008, https://doi.org/10.1038/cddis.2012.172
  7. Extract of Pleurotus pulmonarius Suppresses Liver Cancer Development and Progression through Inhibition of VEGF-Induced PI3K/AKT Signaling Pathway vol.7, pp.3, 2008, https://doi.org/10.1371/journal.pone.0034406
  8. The synergistic effects of traditional Chinese herbs and radiotherapy for cancer treatment vol.5, pp.5, 2013, https://doi.org/10.3892/ol.2013.1245
  9. Cancer Prevention and Therapy : Integrating Traditional Korean Medicine Into Modern Cancer Care vol.13, pp.4, 2014, https://doi.org/10.1177/1534735413510023
  10. Cordyceps cicadae induces G2/M cell cycle arrest in MHCC97H human hepatocellular carcinoma cells: a proteomic study vol.9, pp.None, 2008, https://doi.org/10.1186/1749-8546-9-15
  11. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin vol.4, pp.1, 2008, https://doi.org/10.1007/s13205-013-0121-9
  12. The effect of Cordyceps extract and a mixture of Ganoderma lucidum/Agaricus Blazi Murill extract on human endometrial cancer cell lines in vitro vol.45, pp.1, 2008, https://doi.org/10.3892/ijo.2014.2414
  13. Anti-inflammatory effects of Cordyceps mycelium ( Paecilomyces hepiali , CBG-CS-2) in Raw264.7 murine macrophages vol.15, pp.1, 2008, https://doi.org/10.1007/s13596-014-0173-3
  14. Cordyceps industry in China vol.6, pp.2, 2008, https://doi.org/10.1080/21501203.2015.1043967
  15. Pro-Apoptotic Activity of 4-Isopropyl-2-(1-Phenylethyl) Aniline Isolated from Cordyceps bassiana vol.23, pp.4, 2008, https://doi.org/10.4062/biomolther.2015.021
  16. Cordyceps militaris (L.) Link Fruiting Body Reduces the Growth of a Non-Small Cell Lung Cancer Cell Line by Increasing Cellular Levels of p53 and p21 vol.20, pp.8, 2008, https://doi.org/10.3390/molecules200813927
  17. Grifola frondosaGlycoprotein GFG-3a Arrests S phase, Alters Proteome, and Induces Apoptosis in Human Gastric Cancer Cells vol.68, pp.2, 2008, https://doi.org/10.1080/01635581.2016.1134599
  18. Cordyceps militaris induces tumor cell death via the caspase-dependent mitochondrial pathway in HepG2 and MCF-7 cells vol.13, pp.6, 2008, https://doi.org/10.3892/mmr.2016.5175
  19. Anti-Proliferative and Pro-Apoptotic Activities of 4-Methyl-2,6-bis(1-phenylethyl)phenol in Cancer Cells vol.24, pp.4, 2008, https://doi.org/10.4062/biomolther.2015.166
  20. Uncovering the Molecular Mechanism of Anti-Allergic Activity of Silkworm Pupa-Grown Cordyceps militaris Fruit Body vol.45, pp.3, 2017, https://doi.org/10.1142/s0192415x17500306
  21. Grifola frondosa polysaccharides induce breast cancer cell apoptosis via the mitochondrial-dependent apoptotic pathway vol.40, pp.4, 2017, https://doi.org/10.3892/ijmm.2017.3081
  22. A novel protein from edible fungi Cordyceps militaris that induces apoptosis vol.26, pp.1, 2018, https://doi.org/10.1016/j.jfda.2016.10.013
  23. Green synthesis of gold nanoparticles using a Cordyceps militaris extract and their antiproliferative effect in liver cancer cells (HepG2) vol.47, pp.1, 2008, https://doi.org/10.1080/21691401.2019.1629952
  24. Natural Agents Targeting Mitochondria in Cancer vol.21, pp.19, 2008, https://doi.org/10.3390/ijms21196992
  25. Systems Pharmacology Study of the Anticervical Cancer Mechanisms of FDY003 vol.15, pp.12, 2008, https://doi.org/10.1177/1934578x20977364
  26. Cordyceps militaris Fruit Body Extract Decreases Testosterone Catabolism and Testosterone-Stimulated Prostate Hypertrophy vol.13, pp.1, 2008, https://doi.org/10.3390/nu13010050
  27. A Network Pharmacology Study on the Molecular Mechanisms of FDY003 for Breast Cancer Treatment vol.2021, pp.None, 2008, https://doi.org/10.1155/2021/3919143
  28. Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials vol.11, pp.None, 2008, https://doi.org/10.3389/fphar.2020.602364
  29. Cordyceps militaris: An Overview of Its Chemical Constituents in Relation to Biological Activity vol.10, pp.11, 2008, https://doi.org/10.3390/foods10112634