DOI QR코드

DOI QR Code

Bioremediation Potential of a Tropical Soil Contaminated with a Mixture of Crude Oil and Production Water

  • Published : 2008.12.31

Abstract

A typical tropical soil from the northeast of Brazil, where an important terrestrial oil field is located, was accidentally contaminated with a mixture of oil and saline production water. To study the bioremediation potential in this area, molecular methods based on PCR-DGGE were used to determine the diversity of the bacterial communities in bulk and in contaminated soils. Bacterial fingerprints revealed that the bacterial communities were affected by the presence of the mixture of oil and production water, and different profiles were observed when the contaminated soils were compared with the control. Halotolerant strains capable of degrading crude oil were also isolated from enrichment cultures obtained from the contaminated soil samples. Twenty-two strains showing these features were characterized genetically by amplified ribosomal DNA restriction analysis (ARDRA) and phenotypically by their colonial morphology and tolerance to high NaCl concentrations. Fifteen ARDRA groups were formed. Selected strains were analyzed by 16S rDNA sequencing, and Actinobacteria was identified as the main group found. Strains were also tested for their growth capability in the presence of different oil derivatives (hexane, dodecane, hexadecane, diesel, gasoline, toluene, naphthalene, o-xylene, and p-xylene) and different degradation profiles were observed. PCR products were obtained from 12 of the 15 ARDRA representatives when they were screened for the presence of the alkane hydroxylase gene (alkB). Members of the genera Rhodococcus and Gordonia were identified as predominant in the soil studied. These genera are usually implicated in oil degradation processes and, as such, the potential for bioremediation in this area can be considered as feasible.

Keywords

References

  1. Aislabie, J., M. McLeod, and R. Fraser. 1998. Potential for biodegradation of hydrocarbons in soil from the Ross Dependency, Antartica. Appl. Microbiol. Biotechnol. 49: 210-214 https://doi.org/10.1007/s002530051160
  2. Arenskötter, M., D. Bröker, and A. Steinbüchel. 2004. Biology of the metabolically diverse genus Gordonia. Appl. Environ. Microbiol. 70: 3195-3204 https://doi.org/10.1128/AEM.70.6.3195-3204.2004
  3. Ashok, B. T., S. Saxena, and J. Mussarat. 1995. Isolation and characterization of four polycyclic aromatic hydrocarbon degrading bacteria from soil near an oil refinery. Lett. Appl. Microbiol. 21: 246-248 https://doi.org/10.1111/j.1472-765X.1995.tb01052.x
  4. Bento, F. M., F. A. O. Camargo, B. C. Okeke, and W. T. Frankenberger. 2005. Comparative bioremediation of soils contaminated by natural attenuation, biostimulation and bioaugmentation. Bioresour. Technol. 96: 1049-1055 https://doi.org/10.1016/j.biortech.2004.09.008
  5. Bouchez-Naïtali, M., D. Blanchet, V. Bardin, and J. P. Vandecasteele. 2001. Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: The importance of cell flocculation. Microbiology 147: 2537-2543 https://doi.org/10.1099/00221287-147-9-2537
  6. Bundy, J. G., G. I. Paton, and C. D. Campbell. 2002. Microbial communities in different soil types do not converge after diesel contamination. J. Appl. Microbiol. 92: 276-288 https://doi.org/10.1046/j.1365-2672.2002.01528.x
  7. Chaineau, C. H., J. F. Vidalie, P. Geneste, J. Ducreux, and D. Ballerini. 2000. Bioremediation of a crude oil-polluted clay soil in a temperature zone, pp. 1-12. In: Proceedings of the SPE International Conference on Health, Safety, and the Environment in Oil and Gas Exploration and Production. Society of Petroleum Engineers, Houston, Texas
  8. Chen, H. H., W. J. Li, S. K. Tang, R. M. Kroppenstedt, E. Stackebrandt, L. H. Xu, and C. L. Jiang. 2004. Corynebacterium halotolerans sp. nov., isolated from saline soil in the west of China. Int. J. Syst. Evol. Microbiol. 54: 779-782 https://doi.org/10.1099/ijs.0.02919-0
  9. Cheung, P. Y. and B. K. Kinkle. 2001. Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils. Appl. Environ. Microbiol. 67: 2222-2229 https://doi.org/10.1128/AEM.67.5.2222-2229.2001
  10. Cunha, C. D., A. S. Rosado, G. V. Sebastián, L. Seldin, and I. von der Weid. 2006. Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. Appl. Microbiol. Biotechnol. 73: 949-959 https://doi.org/10.1007/s00253-006-0531-2
  11. Duarte, G. F., A. S. Rosado, L. Seldin, W. Araújo, and J. D. van Elsas. 2001. Analysis of bacterial community structure in sulfurous-oil containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Appl. Environ. Microbiol. 67: 1052-1062 https://doi.org/10.1128/AEM.67.3.1052-1062.2001
  12. EMBRAPA. 1979. Servico Nacional de Levantamento e Conservação de Solos. Manual de métodos de análise de solo. Rio de Janeiro, RJ
  13. EPA 8015C. 2000. Nonhalogenated Organics Using GC/FID. EPA, Revision 3
  14. Evans, F. F., A. S. Rosado, R. Casella, G. V. Sebastián, P. L. O. A. Machado, C. Holmström, S. Kjelleberg, J. D. van Elsas, and L. Seldin. 2004. Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol. Ecol. 49: 295-305 https://doi.org/10.1016/j.femsec.2004.04.007
  15. Gelsomino, A., C. Keijzer-Wolters, G. Cacco, and J. D. van Elsas. 1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Methods 38: 1-15 https://doi.org/10.1016/S0167-7012(99)00054-8
  16. Hawle-Ambrosch, E., W. Riepe, M. Dornmayr-Pfaffenhuemer, C. Radax, A. Holzinger, and H. Stan-Lotter. 2007. Biodegradation of fuel oil hydrocarbons by a mixed bacterial consortium in sandy and loamy soils. Biotechnol. J. 2: 1564-1568 https://doi.org/10.1002/biot.200700082
  17. Heiss-Blanquet, S., Y. Benoit, C. Maréchaux, and F. Monot, 2005. Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR. J. Appl. Microbiol. 99: 1392-1403 https://doi.org/10.1111/j.1365-2672.2005.02715.x
  18. Juck, D., T. Charles, L. Whyte, and C. Greer. 2000. Polyphasic microbial community analysis of petroleum hydrocarboncontaminated soils from two northern Canadian communities. FEMS Microbiol. Ecol. 33: 241-249 https://doi.org/10.1111/j.1574-6941.2000.tb00746.x
  19. Kasai, Y., Y. Takahata, T. Hoaki, and K. Watanabe. 2005. Physiological and molecular characterization of a microbial community established in unsaturated, petroleum-contaminated soil. Environ. Microbiol. 7: 806-818 https://doi.org/10.1111/j.1462-2920.2005.00754.x
  20. Kushner, D. J. 1978. Life in high salt and solute concentrations: Halophilic bacteria, pp. 317-368. In D. J. Kushner, (ed.). Microbial Life in Extreme Environments. Academic Press, London, U.K
  21. Lu, S. J., H. Q. Wang, and Z. H. Yao. 2006. Isolation and characterization of gasoline-degrading bacteria from gas station leaking-contaminated soils. J. Environ. Sci. 18: 969-972 https://doi.org/10.1016/S1001-0742(06)60023-5
  22. MacNaughton, S. J., J. R. Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566-3574
  23. Margesin, R. and F. Schinner. 2001. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 56: 650-653 https://doi.org/10.1007/s002530100701
  24. Margesin, R., D. Labbe, F. Schinner, C. W. Greer, and L. G. Whyte. 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl. Environ. Microbiol. 69: 3085-3092 https://doi.org/10.1128/AEM.69.6.3085-3092.2003
  25. Massol-Deya, A. A., D. A. Odelson, R. P. Hichey, and J. M. Tiedje. 1995. Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA), pp. 1-8. In A. D. L. Akkermans, J. D. van Elsas, and F. J. de Bruijn (eds.), Molecular Microbial Ecology Manual. Section 3.3.2. Kluwer Academic Publishers, The Netherlands
  26. Medina-Bellver, J. I., P. Marín, A. Delgado, A. Rodríguez- Sanches, E. Reyes, J. L. Ramos, and S. Marqués. 2005. Evidence for in situ crude oil biodegradation after the Prestige oil spill. Environ. Microbiol. 7: 773-779 https://doi.org/10.1111/j.1462-2920.2005.00742.x
  27. Nicholson, C. A. and B. F. Fathepure. 2004. Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl. Environ. Microbiol. 70: 1222-1225 https://doi.org/10.1128/AEM.70.2.1222-1225.2004
  28. Nübel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rDNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178: 5636-5643 https://doi.org/10.1128/jb.178.19.5636-5643.1996
  29. Oren, A., P. Gurevich, M. Azachi, and Y. Henis. 1992. Microbial degradation of pollutants at high salt concentrations. Biodegradation 3: 387-398 https://doi.org/10.1007/BF00129095
  30. Philp, J. C., S. M. Bamforth, I. Singleton, and R. M. Atlas. 2005. Environmental pollution and restoration: A role for bioremediation, pp. 1-48. In R. M. Atlas, and J. Philp (eds.). Bioremediation. ASM Press, Washington, DC
  31. Przybulewska, K., A. Wieczorek, A. Nowak, and M. Pochrzaszcz. 2006. The isolation of microorganisms capable of phenol degradation. Pol. J. Microbiol. 55: 63-67
  32. Quatrini, P., G. Scaglione, C. De Pasquale, S. Riela, and A. M. Puglia. 2008. Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. J. Appl. Microbiol. 104: 251-259
  33. Röling, W. F. M., I. M. Head, and S. R. Later. 2003. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: Perspectives and prospects. Res. Microbiol. 154: 321-328 https://doi.org/10.1016/S0923-2508(03)00086-X
  34. Röling, W. F., M. G. Milner, D. M. Jones, F. Fratepietro, R. P. Swannell, and F. Daniel. 2004. Bacterial community dynamics and hydrocarbon degradation during a field scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl. Environ. Microbiol. 70: 2603-2613 https://doi.org/10.1128/AEM.70.5.2603-2613.2004
  35. Seldin, L. and D. Dubnau. 1985. DNA homology among Bacillus polymyxa, Bacillus azotofixans and other nitrogen fixing Bacillus strains. Int. J. Syst. Bacteriol. 35: 151-154 https://doi.org/10.1099/00207713-35-2-151
  36. Smits, T. H. M., M. Rothlisberger, B. Witholt, and J. B. van Beilen. 1999. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ. Microbiol. 1: 307-318 https://doi.org/10.1046/j.1462-2920.1999.00037.x
  37. Supaphol, S., S. Panichsakpatana, S. Trakulnaleamsai, N. Tungkananuruk, P. Roughjanajirapa, and A. G. O'Donnell. 2006. The selection of mixed microbial inocula in environmental biotechnology: Example using petroleum contaminated tropical soils. J. Microbiol. Methods 65: 432-441 https://doi.org/10.1016/j.mimet.2005.09.001
  38. Tian, L., P. Ma, and J. J. Zhong. 2002. Kinetics and key enzyme activities of phenanthrene degradation by Pseudomonas mendocina. Process Biochem. 37: 1431-1437 https://doi.org/10.1016/S0032-9592(02)00032-8
  39. Toledo, F. L., C. Calvo, B. Rodelas, and J. González-López. 2006. Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Syst. Appl. Microbiol. 29: 244-252 https://doi.org/10.1016/j.syapm.2005.09.003
  40. Torsvik, V., L. Ovreas, and T. F. Thingstad. 2002. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science 296: 1064-1066 https://doi.org/10.1126/science.1071698
  41. Vanderberg, L. A., R. Krieger-Grumbine, and M. N. Taylor. 2000. Evidence for diverse oxidations in the catabolism of toluene by Rhodococcus rhodochrous strain OFS. Appl. Microbiol. Biotechnol. 53: 447-452 https://doi.org/10.1007/s002530051640
  42. von der Weid, I., J. M. Marques, C. D. Cunha, R. K. Lippi, S. C. C. Santos, A. S. Rosado, U. Lins, and L. Seldin. 2007. Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil. Syst. Appl. Microbiol. 30: 331-339 https://doi.org/10.1016/j.syapm.2006.11.001
  43. Waight, K., O. Pinyakong, and E. Luepromchai. 2007. Degradation of phenanthrene on plant leaves by phyllosphere bacteria. J. Gen. Appl. Microbiol. 53: 265-272 https://doi.org/10.2323/jgam.53.265
  44. Watanabe, K. 2001. Microorganisms relevant to bioremediation. Curr. Opin. Biotechnol. 12: 237-241 https://doi.org/10.1016/S0958-1669(00)00205-6
  45. Wei, Q. F., R. R. Mather, and A. F. Fotheringham. 2005. Oil removal from used sorbents using a biosurfactant. Bioresour. Technol. 96: 331-334 https://doi.org/10.1016/j.biortech.2004.04.005
  46. Zhang, H., A. Kallimanis, A. I Koukkou, and C. Drainas. 2004. Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl. Microbiol. Biotechnol. 65: 124-131

Cited by

  1. Comparative Bioremediation of Crude Oil-Amended Tropical Soil Microcosms by Natural Attenuation, Bioaugmentation, or Bioenrichment vol.2011, pp.None, 2008, https://doi.org/10.1155/2011/156320
  2. Taxonomic diversity of aerobic organotrophic bacteria from clean vietnamese soils and their capacity for oxidation of petroleum hydrocarbons vol.81, pp.2, 2008, https://doi.org/10.1134/s002626171202004x
  3. Transformation of microflora during degradation of gaseous toluene in a biofilter detected using PCR-DGGE vol.62, pp.7, 2012, https://doi.org/10.1080/10962247.2012.672396
  4. Biodegradation of aged diesel in diverse soil matrixes: impact of environmental conditions and bioavailability on microbial remediation capacity vol.24, pp.4, 2008, https://doi.org/10.1007/s10532-012-9605-2
  5. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils vol.98, pp.6, 2008, https://doi.org/10.1007/s00253-013-5256-4