DOI QR코드

DOI QR Code

Characterizations of Denitrifying Polyphosphate-accumulating Bacterium Paracoccus sp. Strain YKP-9

  • Lee, Han-Woong (Department of Civil and Environmental Engineering, Louisiana State University) ;
  • Park, Yong-Keun (School of Life Sciences and Biotechnology, Korea University)
  • Published : 2008.12.31

Abstract

A denitrifying polyphosphate-accumulating bacterium (YKP-9) was isolated from activated sludge of a 5-stage biological nutrient removal process with step feed system. This organism was a Gram-negative, coccus-shaped, facultative aerobic chemoorganotroph. It had a respiratory type of metabolism with oxygen, nitrate, and nitrite as terminal electron acceptors. The 16S rRNA gene sequence of strain YKP-9 was most similar to the 16S rRNA gene sequence of Paracoccus sp. OL18 (AY312056) (similarity level, 97%). Denitrifying polyphosphate accumulation by strain YKP-9 was examined under anaerobic-anoxic and anaerobic-oxic batch conditions. It was able to use external carbon sources for polyhydroxyalkanoates(PHA) synthesis and to release phosphate under anaerobic condition. It accumulated polyphosphate and grew a little on energy provided by external carbon sources under anoxic condition, but did neither accumulate polyphosphate nor grow in the absence of external carbon sources under anoxic condition. Cells with intracellular PHA cannot accumulate polyphosphate in the absence of external carbon sources under anoxic condition. Under oxic condition, it grew but could not accumulate polyphosphate with external carbon sources. Based on the results from this study, strain YKP-9 is a new-type denitrifying polyphosphate-accumulating bacterium that accumulates polyphosphate only under anoxic condition, with nitrate and nitrite as the electron acceptors in the presence of external carbon sources.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. APHA. 1995. Standard Methods for Examination of Water and Wastewater, 19th Ed. American Public Health Association/American Water Work Association/Water Environment Federation, Washington, DC, U.S.A.
  3. Auling, G., F. Pilz, H. J. Busse, M. Karrasch, M. Streichan, and G. Schon. 1991. Analysis of the polyphosphate-accumulating microflora in phosphorus-eliminating, anaerobic-aerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacter spp. Appl. Environ. Microbiol. 57: 3685-3692
  4. Ault-Riché, D., C. D. Fraley, C. M. Tzeng, and A. Kornberg. 1998. A novel assay reveals multiple pathways regulating stressinduced accumulations of inorganic polyphosphate in Escherichia coli. J. Bacteriol. 180: 1841-1847
  5. Barak, Y. and J. van Rijn. 2000. Atypical polyphosphate accumulation by the denitrifying bacterium Paracoccus denitrificans. Appl. Environ. Microbiol. 66: 1209-1212 https://doi.org/10.1128/AEM.66.3.1209-1212.2000
  6. Barker, P. S. and P. L. Dold. 1996. Denitrification behavior in biological excess phosphorus removal activated sludge system. Water. Res. 30: 769-780 https://doi.org/10.1016/0043-1354(95)00217-0
  7. Brosius, J., J. L. Palmer, H. P. Kennedy, and H. F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75: 4801-4805 https://doi.org/10.1073/pnas.75.10.4801
  8. Cho S. J., K. M. Cho, E. C. Shin, W. J. Lim, S. Y. Hong, B. R. ChoiI, et al. 2006. 16S rDNA analysis of bacterial diversity in three fractions of cow rumen. J. Microbiol. Biotechnol. 16: 92-101
  9. Comeau, Y., K. J. Hall, R. E. W. Hancock, and W. K. Oldham. 1986. Biochemical model for enhanced biological phosphorus removal. Water. Res 20: 1511-1521 https://doi.org/10.1016/0043-1354(86)90115-6
  10. Gerhardt, P., R. G. E. Murray, R. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, and G. B. Phillips. 1981. Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC
  11. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (http://www.mbio.ncsu.edu/BioEdit/bioedit.html). Nucleic Acids Symp. Ser. 41: 95-98
  12. Hallin, S. and P. E. Lindgren. 1999. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl. Environ. Microbiol. 65: 1652-1657
  13. Hiraishi, A., Y. Ueda, and J. Ishihara. 1998. Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal. Appl. Environ. Microbiol. 64: 992-998
  14. Iwema, A. and A. Meunier. 1985. Influence of nitrate on acetic acid induced biological phosphorus removal. Water Sci. Technol. 17: 289-294
  15. Jorgensen, S. J. and A. S. L. Pauli. 1995. Polyphosphate accumulation among denitrifying bacteria in activated sludge. Anaerobe 1: 161-168 https://doi.org/10.1006/anae.1995.1014
  16. Ju, D.-H., M.-K. Choi, J.-H. Ahn, M.-H. Kim, J.-C. Cho, T. Kim, T. Kim, and J.-O. Ka. 2007. Molecular and ecological analyses of microbial community structures in biofilms of a fullscale aerated up-flow biobead process. J. Microbiol. Biotechnol. 17: 253-261
  17. Kong, Y. H., L. J. Nielsen, and H. P. Nielsen. 2005. Identity and ecophysiology of uncultured actinobacterial polyphosphateaccumulating organisms in full-scale enhanced biological phosphorus removal plants. Appl. Environ. Microbiol. 71: 4076-4085 https://doi.org/10.1128/AEM.71.7.4076-4085.2005
  18. Kuba, T., G. Smolders, M. C. M. van Loosdrecht, and J. J. Heijnen. 1993. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor. Water Sci. Technol. 27: 241-252
  19. Kuba, T., G. Smolders, M. C. M. van Loosdrecht, and J. J. Heijnen. 1997. A metabolic model for biological phosphorus removal by denitrifying organisms. Biotechnol. Bioeng. 52: 685-695 https://doi.org/10.1002/(SICI)1097-0290(19961220)52:6<685::AID-BIT6>3.0.CO;2-K
  20. Leaf, T. A., M. S. Peterson, S. K. Stoup, D. Somers, and F. Srienc. 1996. Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate. Microbiology. 142: 1169-1180 https://doi.org/10.1099/13500872-142-5-1169
  21. Lee, H. W., S. Y. Lee, J. O. Lee, H. G. Kim, J. B. Park, E. S. Choi, D. H. Park, and Y. K. Park. 2003. The microbial community analysis of 5-stage BNR process with step feed system. Water Sci. Technol. 48: 135-141
  22. Lee, S. H., J. H. Ko, J. R. Kim, Y. J. Kim, J. J. Lee, C. W. Kim, and T. H. Lee. 2006. Identification of the adverse effect of nitrate on the phosphate release rate and improvement of EBPR process models. Water Sci. Technol. 53: 115-123
  23. Lin, C.-K., Y. Katayama, M. Hosomi, A. Murakami, and M. Okada. 2000. The relationship between isoprenoid quinone and phosphorus removal activity. Water Res. 34: 3607-3613 https://doi.org/10.1016/S0043-1354(00)00096-8
  24. Liu, W.-T., A. T. Nielsen, J. H. Wu, C. S. Tsai, Y. Matsuo, and S. Molin. 2001. In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ. Microbiol. 3: 110-122 https://doi.org/10.1046/j.1462-2920.2001.00164.x
  25. Liu, W.-T., K. D. Linning, K. Nakamura, T. Mino, T. Matsuo, and L. Forney. 2000. Microbial community changes in biological phosphate-removal systems on altered sludge phosphate content. Microbiology 146: 1099-1107 https://doi.org/10.1099/00221287-146-5-1099
  26. Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. J. Parker, P. R. Saxman, R. J. Farris, et al. 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids Res. 29: 173-174 https://doi.org/10.1093/nar/29.1.173
  27. Merzouki, M., J. P. Delgenes, N. Bernet, R. Moletta, and M. Benlemlih. 1999. Polyphosphate-accumulating and denitrifying bacteria isolated from anaerobic-anoxic and anaerobic-aerobic sequencing batch reactors. Curr. Microbiol. 38: 9-17 https://doi.org/10.1007/PL00006776
  28. Mino, T., M. C. M. van Loosdrecht, and J. J. Heijnen. 1998. Microbiology and biochemistry of the enhanced biological phosphate removal processes. Water Res. 32: 3193-3207 https://doi.org/10.1016/S0043-1354(98)00129-8
  29. Mino, T., W. T. Liu, F. Kurisu, and T. Matsuo. 1995. Modeling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Water Sci. Technol. 31: 25-34
  30. Pillay, D., B. Pillay, A. O. Olaniran, W. H. L. Stafford, and D. A. Cowan. 2007. Microbial community profiling in cis- and trans-dichloroethene enrichment systems using denaturing gradient gel electrophoresis. J. Microbiol. Biotechnol. 17: 560-570
  31. Streichan, M., J. R. Golecki, and G. Schon. 1990. Polyphosphateaccumulating bacteria from sewage plant with different processes of biological phosphorus removal. FEMS Microbiol. Ecol. 73: 113-124 https://doi.org/10.1111/j.1574-6968.1990.tb03931.x
  32. Sudiana, I. M., T. Mino, H. Satoh, and T. Matsuo. 1998. Morphology, in situ characterization with rRNA targeted probes and respiratory quinone profiles of enhanced biological phosphorus removal sludge. Water Sci. Technol. 38: 69-76
  33. Toerien, D. F., A. Gerber, L. H. Lotter, and T. E. Cloete. 1990. Enhanced biological phosphorus removal in activated sludge systems, pp. 173-219. In K. C. Marshall (ed.), Advances in Microbial Ecology, Vol. 11. Plenum Press, New York, NY

Cited by

  1. Link between microbial composition and carbon substrate-uptake preferences in a PHA-storing community vol.7, pp.1, 2008, https://doi.org/10.1038/ismej.2012.74
  2. Genome Sequence of a Heterotrophic Nitrifier and Aerobic Denitrifier, Paracoccus denitrificans Strain ISTOD1, Isolated from Wastewater vol.6, pp.15, 2008, https://doi.org/10.1128/genomea.00210-18
  3. Genomic and biotechnological insights on stress-linked polyphosphate production induced by chromium(III) in Ochrobactrum anthropi DE2010 vol.36, pp.7, 2008, https://doi.org/10.1007/s11274-020-02875-6
  4. Strengthening anoxic glycogen consumption in SNEDPR-CW as a strategy to control PAO-GAO competition under carbon limited condition vol.288, pp.p3, 2008, https://doi.org/10.1016/j.chemosphere.2021.132617