References
- Adams, J. D. W. and L. E. Frostick. 2008. Investigating microbial activities in compost using mushroom (Agaricus bisporus) cultivation as an experimental system. Bioresour. Technol. 99: 1097-1102 https://doi.org/10.1016/j.biortech.2007.02.019
- Alfreider, A., S. Peters, C. C. Tebbe, A. Rangger, and H. Insam. 2002. Microbial community dynamics during composting of organic matter as determined by 16S ribosomal DNA analysis. Compost Sci. Util. 10: 303-312 https://doi.org/10.1080/1065657X.2002.10702094
- Bailey, K. L. and L. G. Lazarovits. 2003. Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res. 72: 169-180 https://doi.org/10.1016/S0167-1987(03)00086-2
- Beffa, T., M. Blanc, P. F. Lyon, G. Vogt, M. Marchiani, J. L. Fischer, and M. Aragno. 1996. Isolation of Thermus strains from hot composts (60 to 80oC). Appl. Environ. Microbiol. 62: 1723-1727
- Blanc, M., L. Marilley, T. Beffa, and M. Aragno. 1999. Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular (16S rRNA) methods. FEMS Microbiol. Ecol. 28: 141-149 https://doi.org/10.1111/j.1574-6941.1999.tb00569.x
- Bollen, G. J. 1985. The fate of plant pathogens during composting of crop residues, pp. 282-290. In J. K. R. Gasser (ed.), Composting of Agricultural and Other Wastes. Elsevier Applied Science, London
- Cahyani, V. R., A. Watanabe, K. Matsuya, S. Asakawa, and M. Kimura. 2002. Succession of microbiota estimated by phospholipids fatty acid analysis and changes in organic constituents during the composting process of rice straw. Soil Sci. Plant Nutr. 48: 735-743 https://doi.org/10.1080/00380768.2002.10409264
- Cho, S. J., K. M. Cho, E. C. Shin, W. J. Lim, S. Y. Hong, B. R. Choi, et al. 2006. 16S rDNA analysis of bacterial diversity in three fractions of cow rumen. J. Microbiol. Biotechnol. 16: 92-101
- Dambreville, C., S. Hallet, C. Nguyen, T. Morvan, J. C. Germon, and L. Philippot. 2006. Structure and activity of the denitrifying community in a maize-cropped field fertilized with composted swine manure or ammonium nitrate. FEMS Microbiol. Ecol. 56: 119-131 https://doi.org/10.1111/j.1574-6941.2006.00064.x
- Dees, P. M. and W. C. Ghiorse. 2001. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolated and extracted DNA. FEMS Microbiol. Ecol. 35: 207-216 https://doi.org/10.1111/j.1574-6941.2001.tb00805.x
- Dumontet, S., H. Dinel, and S. B. Baloda. 1999. Pathogen reduction in sewage sludge by composting and other biological treatments: A review. Biol. Agr. Hort. 16: 409-430 https://doi.org/10.1080/01448765.1999.9755243
- Epstein, E. 1997. Microbiology, pp. 53-76. In E. Epstein (ed.), The Science of Composting. CRC Press, Washingtion, DC.
- Fracchia, L., A. B. Dohrmann, M. G. Martinotti, and C. C. Tebbe. 2006. Bacterial diversity in a finished compost and vermicompost: Differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl. Microbiol. Biotechnol. 71: 942-952 https://doi.org/10.1007/s00253-005-0228-y
- Franke-Whittle, I. H., S. H. Klammer, and H. Insam. 2005. Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. J. Microbiol. Methods 62: 37-56 https://doi.org/10.1016/j.mimet.2005.01.008
- Heyrman, J., M. Rodriguez-Diaz, J. Devos, A. Felske, N. A. Logan, and P. De Vos. 2005. Bacillus arenosi sp. nov., Bacillus arvi sp. nov and Bacillus humi sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 55: 111-117 https://doi.org/10.1099/ijs.0.63240-0
- Juteau, P., D. Tremblay, R. Villemur, J. G. Bisaillon, and R. Beaudet. 2005. Analysis of the bacterial community inhabiting an aerobic thermophilic sequencing batch reactor (AT-SBR) treating swine waste. Appl. Microbiol. Biotechnol. 66: 115-122 https://doi.org/10.1007/s00253-004-1692-5
- Larney, F. J. and X. Hao. 2007. A review of composting as a management alternative for beef cattle feedlot manure in southern Alberta, Canada. Bioresour. Technol. 98: 3221-3227 https://doi.org/10.1016/j.biortech.2006.07.005
- Lee, H. J. and J. Kim. 2000. Multiplex PCR-based detection and identification of Leuconostoc species. FEMS Microbiol. Lett. 193: 243-247 https://doi.org/10.1111/j.1574-6968.2000.tb09431.x
- Lemunier, M., C. Francou, S. Rousseaux, R. Houot, P. Dantigny, P. Piveteau, and J. Guzzo. 2005. Long-term survival of pathogenic and sanitation indicator bacteria in experimental biowaste composts. Appl. Environ. Microbiol. 71: 5779-5786 https://doi.org/10.1128/AEM.71.10.5779-5786.2005
- Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Jr. Parker, P. R. Saxman, J. M. Stredwick, et al. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28: 173-174 https://doi.org/10.1093/nar/28.1.173
- McGinnis, S. and T. L. Madden. 2004. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32: 20-25
- Michel, F. C., T. J. Jr. Marsh, and C. A. Reddy. 2002. Bacterial community structure during yard trimmings composting, pp. 25-42. In H. Insam, S. Riddech, and S. Klammer (eds.), Microbiology of Composting. Springer, Berlin, Heidelberg, NY
- Miller, F. C. 1993. Composting as a process based on the control of ecologically selective factors., pp. 515-539. In F. Blaine and J. Metting (eds.), Soil Microbial Ecology - Applications in Agricultural and Environmental Management. Marcel Dekker, NY
- Nakasaki, K., S. Hiraolka, and H. Nagata. 1998. A new operation for producing disease-suppressive compost from grass clippings. Appl. Environ. Microbiol. 64: 4015-4020
- Ntougias, S., G. I. Zervakis, N. Kavroulakis, C. Ehaliotis, and K. K. Papdopoulou. 2004. Bacterial diversity in spent mushroom compost assessed by amplified rDNA restriction analysis and sequencing of cultivated isolates. System. Appl. Microbiol. 27: 7416-754
- Pace, N. R., D. A. Stahl, D. J. Lane, and G.. J. Olsen. 1986. The analysis of natural microbial population by ribosomal RNA sequences. Adv. Microb. Ecol. 9: 1-55
- Peters, S., S. Koschinsky, F. Schwieger, and C. C. Tebbe. 2000. Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphismbased genetic profiles of small-subunit rRNA genes. Appl. Environ. Microbiol. 66: 930-936 https://doi.org/10.1128/AEM.66.3.930-936.2000
- Ryckeboer, J., J. Mergaert, K. Vaes, S. Klammer, D. De Clercq, J. Coosemans, H. Insam, and J. Swings. 2003. A survey of bacteria and fungi occurring during composting and self-heating processes. Ann. Microbiol. 53: 349-410
- Saito, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
- Shuang, J. L., C. H. Liu, S. Q. An, Y. Xing, G. Q. Zheng, and Y. F. Shen. 2006. Some universal characteristics of intertidal bacterial diversity as revealed by 16S rRNA gene-based PCR clone analysis. J. Microbiol. Biotechnol. 16: 1882-1889
- Takaku, H., S. Kodaira, A. Kimoto, M. Nashimoto, and M. Takagi. 2006. Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and -independent approaches. J. Biosci. Bioeng. 101: 42-50 https://doi.org/10.1263/jbb.101.42
- Tang, J. C., T. Kanamori, Y. Inoue, T. Yasuta, S. Yoshida, and A. Katayama. 2004. Changes in the microbial community structure during thermophilic composting of manure as detected by the quinine profile method. Process Biochem. 39: 1999-2006 https://doi.org/10.1016/j.procbio.2003.09.029
- Ten, L. N., G. M. Liu, W. T. Kim, Z. Aslam, and S. T. Lee. 2006. Sphingobacterium composti sp. nov., a novel DNase-producing bacterium isolated from compost. J. Microbiol. Biotechnol. 16: 1728-1733
- Tiquia, S. M., J. M. Ichida, H. M. Keener, D. L. Elwell, E. H. Jr. Burtt, and F. C. Jr. Michel. 2005. Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes. Appl. Microbiol. Biotechnol. 67: 412-419 https://doi.org/10.1007/s00253-004-1788-y
- Tiquia, S. M. and N. F. Y. Tam. 2000. Co-composting of spent swine litter and sludge with forced aeration. Bioresour. Technol. 72: 1-7 https://doi.org/10.1016/S0960-8524(99)90092-5
- Tompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
- Wintzingerode, F., U. B. Gobel, and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213-229 https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
Cited by
- Characterization of Xyn10J, a Novel Family 10 Xylanase from a Compost Metagenomic Library vol.166, pp.5, 2008, https://doi.org/10.1007/s12010-011-9520-8
- Bacillus daqingensis sp. nov., a halophilic, alkaliphilic bacterium isolated fromSaline-sodic soil in Daqing, China vol.52, pp.7, 2008, https://doi.org/10.1007/s12275-014-3376-x
- Bacillus pervagus sp. nov. and Bacillus andreesenii sp. nov., isolated from a composting reactor vol.64, pp.1, 2008, https://doi.org/10.1099/ijs.0.054833-0
- Molecular Phylogenetic Diversity and Spatial Distribution of Bacterial Communities in Cooling Stage during Swine Manure Composting vol.28, pp.6, 2008, https://doi.org/10.5713/ajas.14.0882
- Characterization of a Novel Alkaline Family VIII Esterase with S-Enantiomer Preference from a Compost Metagenomic Library vol.26, pp.2, 2008, https://doi.org/10.4014/jmb.1509.09081
- Draft Genome Sequence of Bacillus humi LMG 22167 T (DSM 16318), an Endospore-Forming Bacterium Isolated from Soil vol.4, pp.1, 2016, https://doi.org/10.1128/genomea.01692-15