DOI QR코드

DOI QR Code

Culture-Independent Analysis of Microbial Succession During Composting of Swine Slurry and Mushroom Cultural Wastes

  • Cho, Kye-Man (Research institute of Agriculture and Life Science) ;
  • Lee, Sun-Mi (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Math, Renukaradhya K. (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Islam, Shah Md. Asraful (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Kambiranda, Devaiah M. (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Kim, Jong-Min (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Yun, Myoung-Geun (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Cho, Ji-Joong (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Kim, Jong-Ok (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Lee, Young-Han (Division of Plant Environmental Research, Gyeongsangnam-do Agricultural Research and Extension Service) ;
  • Kim, Hoon (Department of Bio-environmental Chemistry, Sunchon National University) ;
  • Yun, Han-Dae (Research institute of Agriculture and Life Science)
  • Published : 2008.12.31

Abstract

Bacterial diversity and the composition of individual communities during the composting process of swine and mushroom cultural wastes in a field-scale composter (Hazaka system) were examined using a PCR-based approach. The composting process was divided into six stages based on recorded temperature changes. Phylogenetic analysis of eighty 16S rRNA sequences from uncultured composting bacterial groups revealed the presence of representatives from three divisions, including plant pathogenic bacteria, high-molecule-degrading bacteria and spore-forming bacteria. The plant pathogen A. tumefaciens gradually decreased in abundance during the composting process and eventually disappeared during the thermophilic and cooling stage. A bacterium homologous to Bacillus humi first appeared at the early thermophilic stage and was established at the intermediate thermophilic, post-thermophilic, and cooling stages. It was not possible to isolate the B. humi during any of the stages using general culture techniques.

Keywords

References

  1. Adams, J. D. W. and L. E. Frostick. 2008. Investigating microbial activities in compost using mushroom (Agaricus bisporus) cultivation as an experimental system. Bioresour. Technol. 99: 1097-1102 https://doi.org/10.1016/j.biortech.2007.02.019
  2. Alfreider, A., S. Peters, C. C. Tebbe, A. Rangger, and H. Insam. 2002. Microbial community dynamics during composting of organic matter as determined by 16S ribosomal DNA analysis. Compost Sci. Util. 10: 303-312 https://doi.org/10.1080/1065657X.2002.10702094
  3. Bailey, K. L. and L. G. Lazarovits. 2003. Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res. 72: 169-180 https://doi.org/10.1016/S0167-1987(03)00086-2
  4. Beffa, T., M. Blanc, P. F. Lyon, G. Vogt, M. Marchiani, J. L. Fischer, and M. Aragno. 1996. Isolation of Thermus strains from hot composts (60 to 80oC). Appl. Environ. Microbiol. 62: 1723-1727
  5. Blanc, M., L. Marilley, T. Beffa, and M. Aragno. 1999. Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular (16S rRNA) methods. FEMS Microbiol. Ecol. 28: 141-149 https://doi.org/10.1111/j.1574-6941.1999.tb00569.x
  6. Bollen, G. J. 1985. The fate of plant pathogens during composting of crop residues, pp. 282-290. In J. K. R. Gasser (ed.), Composting of Agricultural and Other Wastes. Elsevier Applied Science, London
  7. Cahyani, V. R., A. Watanabe, K. Matsuya, S. Asakawa, and M. Kimura. 2002. Succession of microbiota estimated by phospholipids fatty acid analysis and changes in organic constituents during the composting process of rice straw. Soil Sci. Plant Nutr. 48: 735-743 https://doi.org/10.1080/00380768.2002.10409264
  8. Cho, S. J., K. M. Cho, E. C. Shin, W. J. Lim, S. Y. Hong, B. R. Choi, et al. 2006. 16S rDNA analysis of bacterial diversity in three fractions of cow rumen. J. Microbiol. Biotechnol. 16: 92-101
  9. Dambreville, C., S. Hallet, C. Nguyen, T. Morvan, J. C. Germon, and L. Philippot. 2006. Structure and activity of the denitrifying community in a maize-cropped field fertilized with composted swine manure or ammonium nitrate. FEMS Microbiol. Ecol. 56: 119-131 https://doi.org/10.1111/j.1574-6941.2006.00064.x
  10. Dees, P. M. and W. C. Ghiorse. 2001. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolated and extracted DNA. FEMS Microbiol. Ecol. 35: 207-216 https://doi.org/10.1111/j.1574-6941.2001.tb00805.x
  11. Dumontet, S., H. Dinel, and S. B. Baloda. 1999. Pathogen reduction in sewage sludge by composting and other biological treatments: A review. Biol. Agr. Hort. 16: 409-430 https://doi.org/10.1080/01448765.1999.9755243
  12. Epstein, E. 1997. Microbiology, pp. 53-76. In E. Epstein (ed.), The Science of Composting. CRC Press, Washingtion, DC.
  13. Fracchia, L., A. B. Dohrmann, M. G. Martinotti, and C. C. Tebbe. 2006. Bacterial diversity in a finished compost and vermicompost: Differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl. Microbiol. Biotechnol. 71: 942-952 https://doi.org/10.1007/s00253-005-0228-y
  14. Franke-Whittle, I. H., S. H. Klammer, and H. Insam. 2005. Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. J. Microbiol. Methods 62: 37-56 https://doi.org/10.1016/j.mimet.2005.01.008
  15. Heyrman, J., M. Rodriguez-Diaz, J. Devos, A. Felske, N. A. Logan, and P. De Vos. 2005. Bacillus arenosi sp. nov., Bacillus arvi sp. nov and Bacillus humi sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 55: 111-117 https://doi.org/10.1099/ijs.0.63240-0
  16. Juteau, P., D. Tremblay, R. Villemur, J. G. Bisaillon, and R. Beaudet. 2005. Analysis of the bacterial community inhabiting an aerobic thermophilic sequencing batch reactor (AT-SBR) treating swine waste. Appl. Microbiol. Biotechnol. 66: 115-122 https://doi.org/10.1007/s00253-004-1692-5
  17. Larney, F. J. and X. Hao. 2007. A review of composting as a management alternative for beef cattle feedlot manure in southern Alberta, Canada. Bioresour. Technol. 98: 3221-3227 https://doi.org/10.1016/j.biortech.2006.07.005
  18. Lee, H. J. and J. Kim. 2000. Multiplex PCR-based detection and identification of Leuconostoc species. FEMS Microbiol. Lett. 193: 243-247 https://doi.org/10.1111/j.1574-6968.2000.tb09431.x
  19. Lemunier, M., C. Francou, S. Rousseaux, R. Houot, P. Dantigny, P. Piveteau, and J. Guzzo. 2005. Long-term survival of pathogenic and sanitation indicator bacteria in experimental biowaste composts. Appl. Environ. Microbiol. 71: 5779-5786 https://doi.org/10.1128/AEM.71.10.5779-5786.2005
  20. Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Jr. Parker, P. R. Saxman, J. M. Stredwick, et al. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28: 173-174 https://doi.org/10.1093/nar/28.1.173
  21. McGinnis, S. and T. L. Madden. 2004. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32: 20-25
  22. Michel, F. C., T. J. Jr. Marsh, and C. A. Reddy. 2002. Bacterial community structure during yard trimmings composting, pp. 25-42. In H. Insam, S. Riddech, and S. Klammer (eds.), Microbiology of Composting. Springer, Berlin, Heidelberg, NY
  23. Miller, F. C. 1993. Composting as a process based on the control of ecologically selective factors., pp. 515-539. In F. Blaine and J. Metting (eds.), Soil Microbial Ecology - Applications in Agricultural and Environmental Management. Marcel Dekker, NY
  24. Nakasaki, K., S. Hiraolka, and H. Nagata. 1998. A new operation for producing disease-suppressive compost from grass clippings. Appl. Environ. Microbiol. 64: 4015-4020
  25. Ntougias, S., G. I. Zervakis, N. Kavroulakis, C. Ehaliotis, and K. K. Papdopoulou. 2004. Bacterial diversity in spent mushroom compost assessed by amplified rDNA restriction analysis and sequencing of cultivated isolates. System. Appl. Microbiol. 27: 7416-754
  26. Pace, N. R., D. A. Stahl, D. J. Lane, and G.. J. Olsen. 1986. The analysis of natural microbial population by ribosomal RNA sequences. Adv. Microb. Ecol. 9: 1-55
  27. Peters, S., S. Koschinsky, F. Schwieger, and C. C. Tebbe. 2000. Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphismbased genetic profiles of small-subunit rRNA genes. Appl. Environ. Microbiol. 66: 930-936 https://doi.org/10.1128/AEM.66.3.930-936.2000
  28. Ryckeboer, J., J. Mergaert, K. Vaes, S. Klammer, D. De Clercq, J. Coosemans, H. Insam, and J. Swings. 2003. A survey of bacteria and fungi occurring during composting and self-heating processes. Ann. Microbiol. 53: 349-410
  29. Saito, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  30. Shuang, J. L., C. H. Liu, S. Q. An, Y. Xing, G. Q. Zheng, and Y. F. Shen. 2006. Some universal characteristics of intertidal bacterial diversity as revealed by 16S rRNA gene-based PCR clone analysis. J. Microbiol. Biotechnol. 16: 1882-1889
  31. Takaku, H., S. Kodaira, A. Kimoto, M. Nashimoto, and M. Takagi. 2006. Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and -independent approaches. J. Biosci. Bioeng. 101: 42-50 https://doi.org/10.1263/jbb.101.42
  32. Tang, J. C., T. Kanamori, Y. Inoue, T. Yasuta, S. Yoshida, and A. Katayama. 2004. Changes in the microbial community structure during thermophilic composting of manure as detected by the quinine profile method. Process Biochem. 39: 1999-2006 https://doi.org/10.1016/j.procbio.2003.09.029
  33. Ten, L. N., G. M. Liu, W. T. Kim, Z. Aslam, and S. T. Lee. 2006. Sphingobacterium composti sp. nov., a novel DNase-producing bacterium isolated from compost. J. Microbiol. Biotechnol. 16: 1728-1733
  34. Tiquia, S. M., J. M. Ichida, H. M. Keener, D. L. Elwell, E. H. Jr. Burtt, and F. C. Jr. Michel. 2005. Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes. Appl. Microbiol. Biotechnol. 67: 412-419 https://doi.org/10.1007/s00253-004-1788-y
  35. Tiquia, S. M. and N. F. Y. Tam. 2000. Co-composting of spent swine litter and sludge with forced aeration. Bioresour. Technol. 72: 1-7 https://doi.org/10.1016/S0960-8524(99)90092-5
  36. Tompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  37. Wintzingerode, F., U. B. Gobel, and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213-229 https://doi.org/10.1111/j.1574-6976.1997.tb00351.x

Cited by

  1. Characterization of Xyn10J, a Novel Family 10 Xylanase from a Compost Metagenomic Library vol.166, pp.5, 2008, https://doi.org/10.1007/s12010-011-9520-8
  2. Bacillus daqingensis sp. nov., a halophilic, alkaliphilic bacterium isolated fromSaline-sodic soil in Daqing, China vol.52, pp.7, 2008, https://doi.org/10.1007/s12275-014-3376-x
  3. Bacillus pervagus sp. nov. and Bacillus andreesenii sp. nov., isolated from a composting reactor vol.64, pp.1, 2008, https://doi.org/10.1099/ijs.0.054833-0
  4. Molecular Phylogenetic Diversity and Spatial Distribution of Bacterial Communities in Cooling Stage during Swine Manure Composting vol.28, pp.6, 2008, https://doi.org/10.5713/ajas.14.0882
  5. Characterization of a Novel Alkaline Family VIII Esterase with S-Enantiomer Preference from a Compost Metagenomic Library vol.26, pp.2, 2008, https://doi.org/10.4014/jmb.1509.09081
  6. Draft Genome Sequence of Bacillus humi LMG 22167 T (DSM 16318), an Endospore-Forming Bacterium Isolated from Soil vol.4, pp.1, 2016, https://doi.org/10.1128/genomea.01692-15