DOI QR코드

DOI QR Code

Identification of Psychrophile Shewanella sp. KMG427 as an Eicosapentaenoic Acid Producer

  • Lee, Won-Hae (Department of Microbiology, Kyungpook National University) ;
  • Cho, Ki-Woong (Department of Marine Biotechnology, Anyang University) ;
  • Park, Soo-Young (Department of Microbiology, Kyungpook National University) ;
  • Shin, Kee-Sun (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Dong-Sun (Department of Microbiology, Kyungpook National University) ;
  • Hwang, Seon-Kap (Department of Microbiology, Kyungpook National University) ;
  • Seo, Seok-Jong (Department of Microbiology, Kyungpook National University) ;
  • Kim, Jong-Myeong (Department of Microbiology, Kyungpook National University) ;
  • Ghim, Sa-Youl (Department of Microbiology, Kyungpook National University) ;
  • Song, Bang-Ho (Department of Biology Education, Kyungpook National University) ;
  • Lee, Sang-Han (Department of Food Science and Technology, Kyungpook National University) ;
  • Kim, Jong-Guk (Department of Microbiology, Kyungpook National University)
  • Published : 2008.12.31

Abstract

An isolate from holothurians was identified as an eicosapentaenoic acid (EPA)-producing bacterium KMG427, which is characterized by EPA synthesis efficiency, by thin layer and gas chromatographic analyses. The EPA production was maximized to more than 10% of the total fatty acids by incubation at $4^{\circ}C$ after cell proliferation at $20^{\circ}C$. The isolated bacterium was categorized as Gram-negative, rod-shaped, aerobic, and motile with a single polar flagellum. According to phylogenetic analysis based on morphological and physiological specificities as an EPA-producing bacterium, the isolate KMG427 was found to belong to the genus Shewanella. The 16S rDNA of KMG427 was revealed to have 100% of sequence identity to that of S. hanedai CIP $103207^T$. Therefore, the isolate might be classified and identified as Shewanella sp. KMG427.

Keywords

References

  1. Baumann, P. R. and H. W. Schubert. 1984. Vibrionaceae. In N. R. Krieg, and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore
  2. Bowman, J. P., S. A. McCammon, D. S. Nichols, J. H. Skerratt, S. M. Rea, P. D. Nichols, and T. A. McMeekin. 1997. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel antarctic species with the (20:5$\omega$3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Microbiol. 47: 1040-1047
  3. Cho, K. W. and S. J. Mo. 1999. Screening and characterization of eicosapentaenoic acid-producing marine bacteria. Biotechnol. Lett. 21: 215-218 https://doi.org/10.1023/A:1005445624918
  4. Cole, R. M. and T. J. Popkin. 1981. Electron microscopy, pp. 34-51. In P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, and G. B. Philips (eds.). Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC, U.S.A.
  5. Cookson, B., H. Talsania, S. Chinn, and I. Philips. 1989. A quantitative and qualitative study of the cellular fatty acids of 'Streptococcus milleri' with capillary gas chromatography. J. Gen. Microbiol. 135: 831-838
  6. Costlow, R. N. 1981. Growth, pp. 65-207. In P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, and G. B. Philips (eds.). Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC, U.S.A.
  7. Delong, E. F. and A. A. Yayanos. 1986. Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl. Environ. Microbiol. 51: 730-737
  8. Dyberg, J. 1986. Linoleate derived polyunsaturated fatty acids and prevention of atherosclerosis. Nutr. Rev. 44: 125-134 https://doi.org/10.1111/j.1753-4887.1986.tb07603.x
  9. Farmer, J. J. 1992. The family Vibrionaceae, pp. 2939-2951. In M. P. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel (eds.). The Prokaryotes. Springer-Verlag, Berlin, Germany
  10. Hirota, K., Y. Nodasaka, Y. Orikasa, H. Okuyama, and I. Yumoto. 2005. Shewanella pneumatophori sp. nov., an eicosapentaenoic acid-producing marine bacterium isolated from the intestines of Pacific mackerel (Pneumatophorus japonicus). Int. J. Syst. Evol. Microbiol. 55: 2355-2359 https://doi.org/10.1099/ijs.0.63804-0
  11. Johns, R. B. and G. J. Perry. 1977. Lipids of the marine bacterium Flexibacter polymorphous. Arch. Microbiol. 114: 267-271 https://doi.org/10.1007/BF00446872
  12. Makemson, J. C., N. A. Fulayfil, W. Landry, L. M. Vanert, C. F. Wimpee, E. A. Widder, and J. F. Case. 1997. Shewanella woody sp. nov., an exclusively respiratory luminous bacterium isolated from Alboran sea. Int. J. Syst. Bacteriol. 47: 1034-1039 https://doi.org/10.1099/00207713-47-4-1034
  13. Mortenson, J. Z., E. B. Schmidt, A. H. Nielson, and J. Dyberg. 1983. The effect of n-6 and n-3 polyunsaturated fatty acids in haemostasis, blood pressure. Thromb. Haemost. 50: 543-546
  14. Nichols, B. W. and R. S. Appleby. 1969. The distribution and biosynthesis of arachidonic acid in algae. Phytochemistry 8: 1907-1915
  15. Nishida, T., N. Morita, Y. Yano, Y. Orikasa, and H. Okuyama. 2007. The antioxidative function of eicosapentaenoic acid in a marine bacterium, Shewanella marinintestina IK-1. FEBS Lett. 581: 4212-4216 https://doi.org/10.1016/j.febslet.2007.07.065
  16. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, New York, U.S.A.
  17. Sasser, M. 1990. Tracking a strain using the microbial identification system. MIDI Technical Note 102. Microbiol ID, Inc., Newark, Del, U.S.A.
  18. Satomi, M., H. Oikawa, and Y. Yano. 2003. Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov., and Shewanella sairae sp. nov., novel eicosapentaenoic-acidproducing marine bacteria isolated from sea-animal intestines. Int. J. Syst. Evol. Microbiol. 53: 491-499 https://doi.org/10.1099/ijs.0.02392-0
  19. Seto, A., H. L. Wong, and C. W. Hesseltine. 1984. Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. J. Am. Oil Chem. Soc. 61: 892-894 https://doi.org/10.1007/BF02542159
  20. Shimizu, S., H. Kawashima, K. Akimoto, Y. Shinmen, and H. Yamada. 1989. Conversion of linseed oil to an eicosapentaenoic acid containing oil by Mortierella alpina at low temperature. Appl. Microbiol. Biotechnol. 43: 1-4 https://doi.org/10.1007/BF00170613
  21. Urakaze, M., T. Hamazaki. Y. Soda, M. Miyamoto, F. Ibuka, S. Yano, and A. Kumagai. 1986. Infusion of emulsified trieicosapentaenoylglycerol into rabbits. The effects on platelet aggregation, polymorphonuclear leukocyte adhesion and fatty acid composition in plasma and platelet phospholipids. Throm. Res. 44: 673-682 https://doi.org/10.1016/0049-3848(86)90168-4
  22. Wirsen, C. O., H. W. Jannasch, S. G. Wakeham, and E. A. Cannel. 1987. Membrane lipids of a psychrophilic and barophilic deep-sea bacterium. Curr. Microbiol. 14: 319-332
  23. Yazawa, K. 1996. Production of eicosapentaenoic acid from marine bacteria. Lipid 31: S297-S300 https://doi.org/10.1007/BF02637095
  24. Yazawa, K., K. Araki, N. Okazaki, K. Watanabe, C. Isikawa, A. Inoue, N. Numao, and K. Kondo. 1988. Production of eicosapentaenoic acid by marine bacteria. J. Biochem. 103: 5-7 https://doi.org/10.1093/oxfordjournals.jbchem.a122238
  25. Yazawa, K., K. Watanabe, C. Ichikawa, K. Kondo, and S. Kimura. 1992. Production of eicosapentaenoic acid from marine bacteria, pp. 29-51. In D. J. Kyle and C. Ratledge (eds.). Industrial Applications of Single Cell Oils. American Oil Chemists' Society, Champain, IL
  26. Yoon, J. H., S. T. Lee, and Y. H. Park. 1998. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48: 187-194 https://doi.org/10.1099/00207713-48-1-187

Cited by

  1. Single-Cell Oils as a Source of Omega-3 Fatty Acids: An Overview of Recent Advances vol.90, pp.2, 2008, https://doi.org/10.1007/s11746-012-2154-3
  2. Identification and Heterologous Expression of a ${\Delta}4$-Fatty Acid Desaturase Gene from Isochrysis sphaerica vol.23, pp.10, 2008, https://doi.org/10.4014/jmb.1301.01065
  3. Response surface methodology for optimising the culture conditions for eicosapentaenoic acid production by marine bacteria vol.40, pp.5, 2013, https://doi.org/10.1007/s10295-013-1238-x
  4. Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production vol.102, pp.14, 2008, https://doi.org/10.1007/s00253-018-9063-9