Browse > Article
http://dx.doi.org/10.4014/jmb.0800.012

Identification of Psychrophile Shewanella sp. KMG427 as an Eicosapentaenoic Acid Producer  

Lee, Won-Hae (Department of Microbiology, Kyungpook National University)
Cho, Ki-Woong (Department of Marine Biotechnology, Anyang University)
Park, Soo-Young (Department of Microbiology, Kyungpook National University)
Shin, Kee-Sun (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology)
Lee, Dong-Sun (Department of Microbiology, Kyungpook National University)
Hwang, Seon-Kap (Department of Microbiology, Kyungpook National University)
Seo, Seok-Jong (Department of Microbiology, Kyungpook National University)
Kim, Jong-Myeong (Department of Microbiology, Kyungpook National University)
Ghim, Sa-Youl (Department of Microbiology, Kyungpook National University)
Song, Bang-Ho (Department of Biology Education, Kyungpook National University)
Lee, Sang-Han (Department of Food Science and Technology, Kyungpook National University)
Kim, Jong-Guk (Department of Microbiology, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.12, 2008 , pp. 1869-1873 More about this Journal
Abstract
An isolate from holothurians was identified as an eicosapentaenoic acid (EPA)-producing bacterium KMG427, which is characterized by EPA synthesis efficiency, by thin layer and gas chromatographic analyses. The EPA production was maximized to more than 10% of the total fatty acids by incubation at $4^{\circ}C$ after cell proliferation at $20^{\circ}C$. The isolated bacterium was categorized as Gram-negative, rod-shaped, aerobic, and motile with a single polar flagellum. According to phylogenetic analysis based on morphological and physiological specificities as an EPA-producing bacterium, the isolate KMG427 was found to belong to the genus Shewanella. The 16S rDNA of KMG427 was revealed to have 100% of sequence identity to that of S. hanedai CIP $103207^T$. Therefore, the isolate might be classified and identified as Shewanella sp. KMG427.
Keywords
Eicosapentaenoic acid; Shewanella sp. KMG427; 16S rDNA; phylogenetic tree;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Farmer, J. J. 1992. The family Vibrionaceae, pp. 2939-2951. In M. P. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel (eds.). The Prokaryotes. Springer-Verlag, Berlin, Germany
2 Sasser, M. 1990. Tracking a strain using the microbial identification system. MIDI Technical Note 102. Microbiol ID, Inc., Newark, Del, U.S.A.
3 Satomi, M., H. Oikawa, and Y. Yano. 2003. Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov., and Shewanella sairae sp. nov., novel eicosapentaenoic-acidproducing marine bacteria isolated from sea-animal intestines. Int. J. Syst. Evol. Microbiol. 53: 491-499   DOI   ScienceOn
4 Shimizu, S., H. Kawashima, K. Akimoto, Y. Shinmen, and H. Yamada. 1989. Conversion of linseed oil to an eicosapentaenoic acid containing oil by Mortierella alpina at low temperature. Appl. Microbiol. Biotechnol. 43: 1-4   DOI   ScienceOn
5 Urakaze, M., T. Hamazaki. Y. Soda, M. Miyamoto, F. Ibuka, S. Yano, and A. Kumagai. 1986. Infusion of emulsified trieicosapentaenoylglycerol into rabbits. The effects on platelet aggregation, polymorphonuclear leukocyte adhesion and fatty acid composition in plasma and platelet phospholipids. Throm. Res. 44: 673-682   DOI   ScienceOn
6 Seto, A., H. L. Wong, and C. W. Hesseltine. 1984. Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. J. Am. Oil Chem. Soc. 61: 892-894   DOI
7 Nishida, T., N. Morita, Y. Yano, Y. Orikasa, and H. Okuyama. 2007. The antioxidative function of eicosapentaenoic acid in a marine bacterium, Shewanella marinintestina IK-1. FEBS Lett. 581: 4212-4216   DOI   ScienceOn
8 Cole, R. M. and T. J. Popkin. 1981. Electron microscopy, pp. 34-51. In P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, and G. B. Philips (eds.). Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC, U.S.A.
9 Baumann, P. R. and H. W. Schubert. 1984. Vibrionaceae. In N. R. Krieg, and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore
10 Johns, R. B. and G. J. Perry. 1977. Lipids of the marine bacterium Flexibacter polymorphous. Arch. Microbiol. 114: 267-271   DOI
11 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, New York, U.S.A.
12 Dyberg, J. 1986. Linoleate derived polyunsaturated fatty acids and prevention of atherosclerosis. Nutr. Rev. 44: 125-134   DOI   ScienceOn
13 Makemson, J. C., N. A. Fulayfil, W. Landry, L. M. Vanert, C. F. Wimpee, E. A. Widder, and J. F. Case. 1997. Shewanella woody sp. nov., an exclusively respiratory luminous bacterium isolated from Alboran sea. Int. J. Syst. Bacteriol. 47: 1034-1039   DOI   ScienceOn
14 Yazawa, K. 1996. Production of eicosapentaenoic acid from marine bacteria. Lipid 31: S297-S300   DOI
15 Yazawa, K., K. Araki, N. Okazaki, K. Watanabe, C. Isikawa, A. Inoue, N. Numao, and K. Kondo. 1988. Production of eicosapentaenoic acid by marine bacteria. J. Biochem. 103: 5-7   DOI
16 Yoon, J. H., S. T. Lee, and Y. H. Park. 1998. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48: 187-194   DOI   ScienceOn
17 Nichols, B. W. and R. S. Appleby. 1969. The distribution and biosynthesis of arachidonic acid in algae. Phytochemistry 8: 1907-1915
18 Delong, E. F. and A. A. Yayanos. 1986. Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl. Environ. Microbiol. 51: 730-737
19 Costlow, R. N. 1981. Growth, pp. 65-207. In P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, and G. B. Philips (eds.). Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC, U.S.A.
20 Mortenson, J. Z., E. B. Schmidt, A. H. Nielson, and J. Dyberg. 1983. The effect of n-6 and n-3 polyunsaturated fatty acids in haemostasis, blood pressure. Thromb. Haemost. 50: 543-546
21 Wirsen, C. O., H. W. Jannasch, S. G. Wakeham, and E. A. Cannel. 1987. Membrane lipids of a psychrophilic and barophilic deep-sea bacterium. Curr. Microbiol. 14: 319-332
22 Bowman, J. P., S. A. McCammon, D. S. Nichols, J. H. Skerratt, S. M. Rea, P. D. Nichols, and T. A. McMeekin. 1997. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel antarctic species with the (20:5$\omega$3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Microbiol. 47: 1040-1047
23 Cho, K. W. and S. J. Mo. 1999. Screening and characterization of eicosapentaenoic acid-producing marine bacteria. Biotechnol. Lett. 21: 215-218   DOI   ScienceOn
24 Yazawa, K., K. Watanabe, C. Ichikawa, K. Kondo, and S. Kimura. 1992. Production of eicosapentaenoic acid from marine bacteria, pp. 29-51. In D. J. Kyle and C. Ratledge (eds.). Industrial Applications of Single Cell Oils. American Oil Chemists' Society, Champain, IL
25 Cookson, B., H. Talsania, S. Chinn, and I. Philips. 1989. A quantitative and qualitative study of the cellular fatty acids of 'Streptococcus milleri' with capillary gas chromatography. J. Gen. Microbiol. 135: 831-838
26 Hirota, K., Y. Nodasaka, Y. Orikasa, H. Okuyama, and I. Yumoto. 2005. Shewanella pneumatophori sp. nov., an eicosapentaenoic acid-producing marine bacterium isolated from the intestines of Pacific mackerel (Pneumatophorus japonicus). Int. J. Syst. Evol. Microbiol. 55: 2355-2359   DOI   ScienceOn